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LITERATURE SURVEY OF PARALLEL PROCESSING

VOLUME I. - EXECUTIVE SUMMARY

Section 1. Summary

1.1 Overview

This 2±terature survey of parallel programming tools, including more than 200
references, is designed to allow continued browsing and probing of different
specific areas of interest. Therefore, the first look at parallel programming
tools is a broad one, where each reference article is briefly described. Key
words (or phrases) were assigned and provided in sorts by author ana by assignment
to a hierarchy of high performance computing technology. This hierarchy ranges
from algorithms through tools environments to architectures and technology. A
table of commercial programming tools is also provided.

At the most focused level, a review is made of articles providing information
which is important to support signal processing parallel tools.

A general discussion of the state-of-the-technology, and definitions and
discussions of key terms, and concepts of parallel computing are also given.

1.2 Software State

Designing and building multiprocessors has proceeded at a dramatic pace; the
development of effective ways to program them generally has not. Yet, software
development is the most critical element in a system's design. The immense
complexity of parallel computation can only increase our dependency on software.

1.3 Concurrency

The fundamental thesis of parallel computing is that concurrency can be expressed
by users and operated upon by parallel computers to achieve significantly higher
speed than in conventional computers. However, present peak-to-delivered
performance for many applications is too large and too different for varying
modes of concurrency.

1.4 Languages

A programming language cannot be general purpose if only a handful of experts
grasp it and use it effectively. See Shapiro [LANG 4]. The future of parallel
computing depends upon the creation of simple, yet effective parallel-
programming models (reflected in appropriate language designs) that make the
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detail of the underlying architecture transparent to the user.

1.5 Mapping and Programming

There are three parts to matching algorithms to architectures:

Understanding the application and its concurrency
Selection of optimal architecture
Mapping the algorithm to the architecture

It is clear that these two parts must be continually iterated to remain at
optimum performance.

Performance programmers on massively parallel machines must consider several
new elements of machine balance. [Stone] These are:

Processor bandwidth - partition processes among processors
Memory bandwidth - access data in parallel
I/0 bandwidth - rate must sustain full computational power
Communications bandwidth - move data between processes
Synchronization bandwidth - coordinate activity of processes
Multiple purposes - maintain flexibility for multiple parallel processing
modes

1.6 Resource Contention

All parts of th: parallel processor must operate at a reasonable design
efficiency. TIhis be expected by the user. The user, coding (specifying) at the
concurrency level, cannot be required to anticipate that hidden pattern-related
resource conLention degradation can occur in his solution. Networks and memories
should be conflict-free and support parallel synchronization through instruction
level operation. Concurrent processes must be independent of the functional units
and processors used to compute the results.

1 7 Portability

The need for concurrent languages, independent of the computer architecture, is
evident from the literature survey.

In the parallel marketplace there is now very little to no portability between
applications on parallel processors. Each requires mapping the application to
the machine to achieve reasonable performance. Parallel extensions to sequential
languages provided are not supported on other machines. Present language
extensions are too assembly-like, and are very machine oriented and dependent.
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1.8 1nstrumentation and Performance Measurement

The user must be provided with highly visual t1ols to understand the operation
of his algorithm on the machine. This will enable the user to express the
concurrency in the problem in other forms to discover better solutions. The user
may be mapping the concurrent algorithm to the machine by using this feedback
but does so at a higher level. Other parallel processor designs may operate less
effectively, but a reasonable level of operation could be expected without
tuning.

1.9 Flexibility

Systems must be adequately robust to allow reprogramming without entire rewrites,
while maintaining reasonable performance. Small changes should not severely
impact the performance, and the user must be able to assume this; otherwise the
maintenance of parallel computer codes will require that the developers be
retained to constantly update them.

Section 2. Recommendations

The literature survey discovered no complete or machine-independent set of
parallel processing tools for signal processing. Academia has made excellent
starts on defini,g the elements of machine-independent programming environments,
but implementations tend to be architecture (processing mode) directed toward
MIMD, SIMD, Dataflow, or special purpose architecture. However, the sur-vev
results can now be analyzed to define the characteristics and possibly the
specifications of a parallel programming environment for signal processing.

A wide diversity of architectures and associated approaches is evident from the
survey. In addition, the rapid pace of change in architectures quickly renders
obsolete many parts of tools. Use extreme care to ensure that machine-dependent
material is not critical to the approach or results. However, this diversity
leads to several common recommendations:

Abstraction at several levels is required
Object-oriented approaches are a common approach to abstraction
Layering of an environment's design is necessary to maintain long range
robustness
Use concurrent or parallel functional language without sequential bias

These common elements were recognized as necessary to successful parallel
programming tool environments:
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Visual or graphical programming
Mapping into heterogeneous environments
Control and data partitioning tools
Debugging and performance measurement tools
Architectural modeling tools
Extensions to languages and adaptation of parallel abstract languages
Extensive libraries for each architecture with machine-independent
common user interfaces
Sets of machine dependent tools for use by support specialist in building
the general signal processing environment

The long range view of a parallel programming environment for signal processing
includes the following organization:

Graphical Human Computer Interface
Rapid Prototyping Systems Environment
Scenario Driven Experiment Support
Algorithm analysis, Design, and Performance Evaluation
Parallel Architecture Modeling
Machine Independent Programming and Mapping tools

performance monitor and debug
language extensions
operating system extensions
library

Machine Dependent Mapping Tools for each architecture

Section 3. Conclusion

The challenge of the tool building effort will be maintaining machine
independence when developing applications, algorithms, and tool environments.
The rapidly changing architectures force a machine-independent approach in long
range applications In addition, new architecture requirements may result from
algorithm advances exceeding advances in hardware speed,

Abstraction, layering, and architecture modeling and tracking are essential to
maintain machine independence.

Object-oriented programming in a concurrent language (for example, Concurrent
C++) is needed to ensure that systems designers are freed from building to the
wrong architecture.

A carefully designed set of standards should be evolved which supports a layered
tool environment, along the lines of the 0SI/ISO communication standards.

Section 6 gives a list of near term tools which start the effort on each tool
area. The tool categories are:
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Visualization
Concurrency estimator
Standardization
General Aids
Abstraction
Architectural Model
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LITERATURE SURVEY OF PARALLEL PROCESSING

VOLUME II. - TECHNICAL

Section 1. Overview

1.1 Scope and Objectives

This survey provides a software tools review for moderate to massive parallel
processing and identifies opportunities to apply these tools to signal processing
applications. The survey covers modern tools which have been reported in the
.:era-ure during the past two years, including the full hierarchy of software
development. It first sets the tools scene by drawing out brief ideas on tool,
methods, and information. The survey pinpoints matches then exploring those in
more detail.

1.1.1 Tool Hierarchy

The levels of the hierarchy include the following:

LEVEL LABEL

Science and Mathematics [Sci)
Numerical Methods [Num]
General Algorithms [Alg]
Libraries [Lib]
General Programming Methods [Prog)
Modeling, simulation, and Analysis tools [Sim)
Application Mapping tools [Map]

Human-computer interface [HCI]
Parallel environment [Env)
Support Utilities and Standards [Sup]

User extensions to Languages [ExtLang]
User extensions to Operating systems [ExtOS]
Languages and compilers [Lang)
Operating Systems [OS]

Architectures [Arch)
Technology [Tech]

Labels in the square brackets "[.." are identifying labels used to organize the
material. The effort will concentrate on the middle of the hierarchy, but ideas
from elements outside the control of the user are included in the hierarchy above,
because these may lead to extensions and environment tools. Note that the survey
labeled no references as [Sci] or [Num] because other labels were more appropriate
when those topics were past of the references. Yor example, McBryan [PROG 22]
discusses numerical methods but his overall work was better labeled in another
topic (programming).
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1.2 Survey Method

The goal of this survey is to identify the parallel programming tools which can
assist in the difficult task of programming signal processing applications in
parallel architectures. Therefore, the filter used in selection of materials is
to select those which allow rapid prototyping, a supporting data base of test
and evaluation inputs, architecture modeling, parallel algorithm development,
and supporting graphical human interfaces, programmer mapping aids, language
extensions, libraries, and machine mapping. The study also includes software
engineering tools, concurrent algorithms and methods, vendor supplied programming
languages and mapping tools for decomposition, synchronization, load balancing,
and grain control, vendor supplied extensions, debugging and profiling tools,
and operating systems. A letter was sent to parallel computer suppliers to
receive their latest information.

The topics which are prime opportunities for impacting near-term needs for signal
processing activities are covered in more detail. This concentration is,
therefore, on those tools believed to be appropriate to moderately parallel (16 to
64 processors) and massively parallel (above 64 processors) and SIMD machines.
Some reviews were included to give additional breadth.

1.3 Document Overview

Section 2 provides brief statements of some the key issues of parallel
programming. Appendix A provides additional definitions of general parallel.

Se tion 3 provides a very brief review of selected journal articles from the
general parallel survey. Section 4 provides a summary table of materials from
commercial vendors of parallel computers. Section 5 contains short reviews of
articles which could significantly affect the effort. Section 6 provides a
framework for organizing an environment for parallel signal processing development
through rapid prototyping. algorithm development, architecture modeling, and
experimental evaluation. This environment is defined to be consistent with ideas
and information gained through the literature survey.

Appendix A defines terms used in parallel processing. A list of references

identified and filtered from the literature are provided in Appendix B. Appendix

C provides key words and a sorted list by author. These lists give cross

references of key words and an alphabetical list of authors to help identify

references which are applicable to more than one level of the hierarchy.
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Section 2. Parallel Processing Background

In this section, we discuss some of the issues which must be addressed in
parallel programming (Murphy]. (References for general text discussions are
given at the end of Appendix A.)

2.1 Software State

The technical challenge of parallel processing is to provide a massively parallel
computer which can be effectively programmed from a language which refers to the
concurrency in the problem, not the computer architecture. This abstraction must
be possible with only a small loss from the peak speed for any concurrent
expression. This requires the building of parallel processor and languages which
run from a specification level language without mapping.

There are substantial gains to be realized from parallel processing but these
require careful selection of the proper architecture to match the problem and
changing of the skills of the scientists and engineers who perform the
application. Matching highly structured applications makes possible a large
expansion of problem space, and potentially leads to breakthroughs. Problems
must have significant concurrency which matches available architectures.

Designing and building multiprocessors have proceeded at a dramatic pace, yet
the development of effective ways to program them generally has not. Yet,
software development is the most critical element in a system's design. The
immense complexity of parallel computation can only increase our dependency on
software.

The difference in the performances of well mapped (performance programmed) and
abstract tool mapped (convenience programmed) applications is too large. The
peak-to-delivered performance ratio drops rapidly if the application is not
completely matched and mapped to the machine. Several efforts are underway to
solve this problem.

2.2 Concurrency

Nature contains a tremendous amount of concurrency, but it is reduced by the steps
involved in choosing physical models, algorithms, computational methods,
programming, and computer language constraints, combined with hardware
architecture. The fundamental thesis of parallel computing is that concurrency
can be expressed by users and operated upon by parallel computers to achieve
significantly higher speed than in conventional computers. However, present
peak-to-delivered performance for many applications is too large and too different
for varying modes of concurrency.

However, present parallel computer designs only support one or two modes of
operation (forms of concurrency) because a single parallelism mode has been
concentrated upon. For example, highly independent and homogeneous numerical
applications may run well on Architecture 1 and poorly on Architecture 2, but the
opposite performance rating occurs when the application is changed. The concern
is not that this happens, but that the difference in performance between the two
cases is very large. Peak-to-delivered performance for many applications is too
large and too different for varying modes of concurrency.
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2,3 Languages

A programming language cannot be general purpose if only a handful of expertsgrasp It and use it effectively. The future of parallel computing depends uponthe creation of simple but effective parallel-programming models (reflected inappropriate language designs) that make the detail of the underlying architecture
transparent to the user. See Shapiro [LANC 4).

Parallel architectures presently lack clear abstraction constraints, leaving
the user to cope with problems of immense complexity at one time.

The safe approach is to use a layered hierarchy and structure to allowindependent work on small portions of a problem. Separation of algorithm designfrom architectural considerations is ideal and several approaches for this arefound in the literature survey. Conventional software engineering tools andtechniques approach complex system applications in this manner. Abstraction
constraints aid in vector and systolic programming and are candidates forconcurrency investigations. There are other concurrent methods which require
dividing a problem into cells or volumes corresponding to data or functionalconcurrency or into synchronizing (or communicating) tasks. Concurrent paradigms
and languages do exist but are not yet well mapped into widespread machines.

Object-oriented languages are a potential solution to the abstraction problem.

2.4 Mapping and Programming

There are three parts to matching algorithms to architectures:

Understanding the application and its concurrency
Selection of optimal architecture
Mapping the algorithm to the architecture

Both must be performed well to achieve the expected speed up and performance
results. Long-range efforts must continually iterate this process because newarchitectures and new algorithms can bring large performance increases.

Some of the details that have to be considered when selecting the computer arehow each computing mode is supported and the tools provided. Details ofsupporting architectural features which must be considered are:

Concurrency conservation and loss due to overheads
Processor context switch latency
Memory access latency
Scheduling and mapping difficulty
Control requirements
Data storage and data flow
Communications and the memory access method
Topology
Control and scheduling
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Synchronization (Megasynchronizations per second - MSYS)

Performance programmers on massively parallel machines must consider several
new elements of machine balance. [Stone) These are:

Processor bandwidth - partition processes among processors
Memory bandwidth - access data in parallel
I/0 bandwidth - sustain full computational power
Communications bandwidth - move data between processes
Synchronization bandwidth - coordinate activity of processes
Multiple purposes - maintain flexibility for multiple applications modes

2.5 Resource Contention

All parts of the parallel processor must operate at a reasonable design
efficiency and this should be expected by the user. It is inappropriate to
require a user coding at the concurrency level to anticipate that hidden pattern
related resource contention degradation can occur in his solution. Networks and
memories should be conflict-free and support parallel synchronization through
instruction level operation. Concurrent processes must be independent of the
functional units and processors used to compute the results. Instrumentation must
be performed to allow for detection of contention problems because these can be
highly non-linear.

2.6 Portability

The need for concurrent machine independent languages, independent of the
computer architecture, is evident from the literature survey.

There is now very little or no portability between applications on parallel
processors. Each requires that the application must be mapped to the machine in
order to achieve reasonable performance. Other machines will not support parallel
extensions to the sequential languages provided. Present language extensions are
too assembly-like, and are very machine-oriented and dependent. The challenge
is to develop concurrent languages which support, without machine considerations,
the expression of all forms of concurrency. Architects can then implement
computers, machine dependent compiler backends and tools which allow a concurrent
expression to be run on the given architecture.

Many expect that these languages will represent the algorithm in both graphical
and word forms. The capabilities of present workstations and the standardization
of tools such as X-Windows, facilitate this development.

2.7 Instrumentation and Performance Measurement

The user must be provided with highly visual tools to understand the operation
of his algorithm on the machine. Providing this operational look allows the user
to discover better solutions by expressing the concurrency of the problem in
other forms. The user may be mapping the concurrent algorithm to the machine by
using this feedback, but does so at a higher level. Other parallel processor
designs may operate less effectively but a reasonable level of operation could
be expected without tuning.
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In addition, it is necessary to establish new and different ways to describe a
machine to allow users to effectively evaluate the potential for an application.
This action is also at the higher level of abstraction. These machine
descriptions must reveal the performance across all modes of processing, not only
on highly structured processing domains. Concurrency can be expressed in other
domains but is seldom supported by existing parallel processors.

2.8 Flexibility

Systems must be sufficiently robust to maintain reasonable performance while
allowing reprogramming without entire rewrites. Small changes should not severely
impact the performance. The user must be able to work with this assumption;
otherwise the maintenance of parallel computer codes will require that the
developers be retained for constant updates. This problem has a parallel with
the large maintenance costs incurred by over reliance on performance programming
in many systems. If this problem cannot be solved, large life cycle costs and
a corresponding reduction in the market for massively parallel computers can be
expected.

A recent paper by Kumar [KUMAR] demonstrates that the average level of
concurrency in large scientific Fortran benchmark codes is 500 to 3,500
concurrent actions over the application. This level of concurrency increases
with the size of the application.

[KUMAR] has shown that concurrency in very large problems is quite high. Kumar's
example codes are existing Fortran applications, not specially coded problems
in which direct and expanded concurrency could be expressed.

2.9 Architectures

Additional architecture features may be considered, among them are:

Machine Cycle
Instructions
Addressing Modes
Memory Hierarchy
Coupling (Local to Shared Memory)
Cache Strategy
Secondary Storage and I/O
Basic Instruction Suite (RISC/CISC Issues)
Functional Unit Adjudication
Micro-task scheduling

[Stone] considers these to be the challenges to a computer architect:

Eliminate the synchronization bottleneck (MSYS)
Reduce overhead for scheduling tasks
Solve the cache coherency problem, or
Find a means of increasing local memory
Map serial programs to parallel programs
Identify useful parallelism
Avoid inefficient forms of parallelism
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Section 3. General Parallel Software Survey

Brief descriptions of each article selected for inclusion are given below. Many
parallel r' ferences were found but not included because they were redundant,
esoteric, or remote to parallel tool environments. Names of environments or tools
are given in parentheses at the end of each paragraph.

3.1 Algorithms

Signal Processing System Environment

Lager [ALG 1 *l gives an overview of a graphically oriented signal processing
system which provides the necessary environment for exploring algorithms to build
systems. This article is limited to sequential systems. Similar displays have
been given in simulation conferences in the past two years.

Purtilo [ALG 2] describes an interprocessor communications support system for
design which allows separation of specification and implementation. (POLYLITH)

Bokhari [ALG 3] gives optimal assignment methods using the sum-bottleneck path
algorithm which allows polynomial time solutions in some cases. Chains or rings
of processors are considered, as well as single host, multiple servers.

Jamieson [ALG 4 ]2 gives a check list of algorithm characteristics and
architecture characteristics which should be dealt with in a complete system.

Chen [ALG 5 *1 uses the data dependence graph as a tool for designing algorithms.
Forest and multistage graphs are included. Regular and semi-regular graphs are
discussed in other papers.

Frieze [ALG 6] provides parallel algorithms for solutions to the quadratic
assignment problem on the DAP.

Engstrom [ALG 7] A systolic array programming system is presented. Notation, C
code production, and high level specification to allow interfacing with others
are stressed.

McCrosky [ALG 8 *] provides a Algorithms for array based computation for fine-
grained SIMD machines.

Stone [ALG 9] Stone shows that the speed of the Connection Machine on one of
the data search methods is due to I/O bandwidth, not the processing power.

O'Hallaron [ALG 10 *] describes Kalman filter implementation on the WARP.

1 A star (*) indicates that this article

has been reviewed in more detail in the report.
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Alexander [ALG 11] provides multidimensional signal processing methods to optimize
communication overheads.

Lin [ALO 12] parallel gives a matrix inversion method for dynamic communication
restructuring machines.

Arya [ALG 13] provides system modeling combined with notation for data transfers.
This is a tool for algorithm optimization.

Fox [ALGI 14] gives hypercube algorithms for matrix manipulations. Code for this
set is available from Fox in C.

Feng [ALG 15] gives communicating sequential processes to develop the alternative
construct, thus enabling a process to non-deterministically select one
communication among many. These processes were implemented on the BB & N
Butterfly.

Armstrong [ALG 16] describes multiple algorithm methods for one-dimensional FFTs
for Convex computers.

Swarztrauber [ALG 17] gives both vector multiprocessor and hypercube FFT
algorithms. Eight existing FFTs are reviewed.

[ALG 18] is the cover of a special issue of IEEE Transactions on Computers on

parallel and distributed algorithms

3.2 Library

Dongarra (LIB 1] shows how to interpret the results of the LINPACK benchmark
from the LINPACK library.

Snelling [LIB 2] compares several libraries on supercomputers.

Hammarling [LIB 3] reviews the NAG Library on supercomputers.

3.3 Simulation

Ammar [SIM 1 *] shows a method for deriving the time cost of parallel
computation, defines classifications of computing structures, and derives an
approach to the time cost of each.

Bain [SIM 2) describes Hypersim, a parallel performance simulator for
architecture decision making for the Sun and iPSC.

Yoder [SIM 3] compares the simulation of SIMD and a VLSI processor arrays. A
word recognition case is used as the application.

Ramamoorthy [SIM 4] provides a set of rules with which to incrementally expand a
system and maintain logical correctness. Petri nets are used with the rules to
verify logical properties.

Yaw (SIM 5] gives a method of computing the cycle time of concurrent systems
modeled by a restricted set of Petri nets.
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Chung [SIM 6] develops parallel execution schemes for a Petri net model of a
task.

Krauss [SIM 7] presents formal verification of a computer program using labeled
Petri nets.

Stotts (SIM 8 *] gives parallel flow graphs (PFG) with visual and hierarchical
properties, using a Petri net.

Hura [SIM 9] describes an environment called PNSOFT used for Petri net modeling.

Bray [SIM 10] gives a description of a tools set, including concurrency detection
tools, architecture modeling, and optimization of architectures to match the
concurrency in the algorithm.

3.4 Mapping

Nicol [MAP 1) uses the elliptical partial differential equdtion to study the
relationship of problem partitioning parameterb, determining values to achieve
optimal speed up.

Kr-skal [MAP 2] gives a series of definitions of granularity and attempts to
define two forms: (1) natural, based on the time between required
synchronizations; and(2) architectural, based on the communications overhead.

McDowell [MAP 3] shows that reachable program states grow exponentially with
the number of tasks. A virtual state is used to merge a set of related reachable
states, allowing the static analysis of parallel programs for concurrency.

Berman [MAP 4] presents a solution to the problem of mapping when there are
topological mismatches and the number of processors required by the algorithm
exceeds the number available.

Cherkassky [MAP 5 *] uses two matrix algorithms to demonstrate one way to
optimize balance between communications and computation overheads. Two matrix
algorithms are used to demonstrate the approach. Parallel gaussian elimination
is also demonstrated.

Moreno [MAP 6] gives a method of partitioning algorithms for application in
systolic arrays.

Kumar (MAP 7] gives a general method to reduce bandwidth requirements by mapping
two-dimensional arrays into one-dimensional arrays.

Reddy [MAP 8] reduces the links to needed for I/O in hypercube architectures
when I/O is embedded in each node.

Dubois [MAP 9] separates parallel computing into throughput-oriented and speed
up-oriented approaches. He also discusses synchronization issues in
multiprocessors.
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Wu [MAP 10] gives an automatic scheduling and synchronization tool for hypercube
architectures using a macro data flow graph.

Muhlenbein [MAP 11 *] shows the evolution approach to parallel programming.
Parallel programming is shown to be reduced to the graph partitioning problem,
which is solved through a biologically-based evolution approach. The example
used is the traveling salesman problem.

Bailey [MAP 12] Cover, Proceedings of the 1988 International Conference on
Parallel Programming.

Kim [MAP 13] uses a heuristic method to provide a graph representation of a
parallel computation, the merges the parallel computation to produce optimized
computation and communications costs.

McDowell [MAP 14] detects anomalies in parallel programs using static analyzer
methods. McDowell uses a state graph called the Concurrency History Graph as a
visual indicator of the concurrency history.

Greenbaum (MAP 15] analyzes execution and waiting time due to processor
synchronization. Less restrictive forms of barrier synchronization are proposed
for certain granularities.

Stout [MAP 16] gives problems of mapping between various types of architectures.
Vision algorithms are the subject used. Mesh, hypercube, mesh-of-trees, pyramid,
and Parallel Random Access Machines (PRAMs) are considered.

[MAP 17] Cover, Supercomputing '88.

Martin [MAP 18] gives an overview of wapping.

Fox [MAP 19] Cover, Third Conference On Hypercube Concurrent Computers And
Applications.

Fox [MAP 20] gives communications algorithms which map neural network simulations
on the hypercube.

Fox [MAP 21] gives neural network methods of load balancing and scheduling on
the hypercube.

Salmon (MAP 22] develops the method of scattered decomposition as a tool to show
the load imbalance.

Pettey (MAP 23] discusses minimizing communications and memory utilitization in
process placement mapping. The NP-complete problem is approached by heuristic
and the method of simulated annealing is discussed as one solution.

Livingston (MAP 24] considers the problem of distributing resource units to
processors in a hypercube to meet performance requirements.

Ercal [MAP 25) gives a method of task allocation by recursive minicut bi-

partitioning.
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Chen [MAP 26] studies topology mismatch between the algorithm and the machine.
The average path length is to be minimized but the problem is NP-complete.
Approximation algorithms are used to find good mapping in specific cases. A
greedy mapping strategy is analyzed.

Bell [MAP 27] discusses data partitioning.

Kruatrachue [MAP 28] gives an automatic technique for determining the grain sizes
in a parallel program. Optimal execution requires solution to grains sizing and
scheduling. Grainpacking is used to get optimal results.

Ramanujam [MAP 29] applies simulated annealing to avoid the local minimum trap
problem.

(MAP 30] Cover, Proceedings Supercomputing '88.

Kramer (MAP 31] discusses process assignment in distributed memory parallel
computers. A robustness measure is introduced for hypercube machines and
SUPRENUM. The result shows that optimal mapping is important to the hypercube
but that simple mapping schemes give nearly optimal results in the SUPREN'UM.

Musciano [MAP 32] discusses medium grain dynamic scheduling and the SPOC
environment implemented in Simultaneous Pascal.

Weiss (MAP 33] gives dynamic scheduling for DOALL- loops and FORK-JOINS to support
the output of parallelizing Fortran preprocessors.

Peir [MAP 34] approaches linear recurrences and how to minimize their impact on
multiprocessor systems. A new method, minimum distance, is used to create totally
independent computations from linear recurrences.

[MAP 35] Cover, Proceedings of 1988 International Conference on Parallel
Processing.

Missirlis [MAP 36] discuss the successive over-relaxation (SOP.) method on
asynchronous multiprocessors.

Kapenga [MAP 37] gives an adaptive scheme for task partitioning on MIMD machines.
Many serial adaptive procedures are directly translated into parallel versions.
A high level set of macros was developed and used over the Argonne macro package.

Bisiani [MAP 38] describes Aguora a system for multilanguage parallel
applications for heterogenous machines. The system uses shared memory abstraction
to program across different machines.

Colin [MAP 39] presents a method for task allocation on distributed memory
machines using a graph model to show dependencies. A virtual parallel machine
is introduced with infinite processor count and has a complete connection graph.

Rosenburg (RAP 40] describes a software behavior simulation for a new SIMD
arcfitecture. Mapping between massively parallel SIMD machines and vector
architecture was exploited to provide architectures guidance and high level
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software development before construction. BLITZEN is an evolution of the NASA

MPP. Very high peformance simulations were achieved using the mapping form SIMD

to vector architectures.

deJong [MAP 41] describes a mapping tool which verifies matrix bounds through
symbolic operations, providing additional abstraction for the user.

Katsef [MAP 42] gives a data partitioning method for implementing an assembler

on a message passing multiprocessor system. The author supplies other methods
for partitioning program text and sharing global information.

3.5 Programming

Gokhale [PROG 1] A data flow language, PS. Globally referenced user-defined data

types are defined and then modules are described. Each module is a side-effect

free function. Values are assigned by use of definitions which equate a variables

name to an expression. No control constructs are allowed. The author analyzes

data dependencies and synthesizes order of execution. C is generated but other

code may be required to complete the application

Purtilo [PROG 2] see [ALC 2]

Browne [PROG 3 *] has developed a unified approach to parallel programming. CODE

is an architecture-independent programming tool which allows graphical

programming using Computational Units and Dependency Relations. Computational

units have a functionality and a firing rule. Dependency relations are used to

compose the computational units into a parallel computational structure. An

architecturally dependant translator (TOAD) is used to map to specific machines.

Constraint dependencies are also supported.

Neves [PROG 4) provides a commentary on the problems of parallel programming
and the lack of fulfillment of promise of software tools.

DeMarco [PROG 5] discusses four signs of change in parallel processing- data flow
methods for systems representation, reusable components, object-oriented
languages, and parallel architectures.

Cavano [PROG 6) identifies future costs of software as the driving force in

systems.

Cavano [PROC 7] gives a list of short falls in parallel software tools.

Russell [PROG 8] describes a plan for using expert systems to program parallel

computers.

Fox [PROG 9] gives categories of coarse grain architectures and three approaches

to programming: user provides whole program, user prepares large grain, and user

prepares fine grain objects. In the whole program case, C is identified as

difficult to automatically decompose because of use of pointers; for large-grain

objects Fox has developed annealing and neural network methods of allocation and

decomposition, but there is no tool to help the user: all of it is hand embedded.

Smalltalk and C++ are reported as having some promise, when object-oriented and
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virtual machine techniques are used. Fine grain objects are likened ti VLSI
methods of design. Fox reports California Institute of Technology work on MIMD

generalizations of C" programs from the Connection Machine. Gluing compilers qre
used to build the code grain.

Chandy [PROG 10 *] describes UNITY, a specification notation and proof system
for parallel programming, and suggests that hardware architects build computers
which effectively execute functional code. Functional, logic, and sequential

programming advantages are briefly mentioned.

Sobek [PROG 11 *] gives additional CODE material (See Browne [PROG 3)) on the
constraint specification.

Nicol [PROG 12] gives relationships on grid size, stencil type, partitioning
strategy, processor execution time, and communication network type. Effects of
communication and synchronization overheads are included. Optimal speedup is

the goal for PDEs.

Chandy PROG 131 (Description of UNITY continued.) This article describes stages
and the tool required for each: general strategy and restriction of class of
solutions, considering architectural issues to rule out more solutions, and

designing programs in a series of refinement steps.

Sabot rPROG 14: is a book about architectural independent programming using
parallel relations. This is implemented on the Connection Machine.

Hudak [PROG 15] provides a general overview of functional programming. In
functional programming the specification and the implementation are separate
components. Para-functional programming is a rapid prototyping method. It is
functional in that the results of a program operation are to be expressed
declaratively, with no state or imperative constructs. Several views of an object
(operational and functional) are needed (ParAlfl).

Hudak [PROG 16] see Hudak [PROG 15].

Fox (PROG 17] Proceedings Cover.

Kallstrom [PROG 18] Three parallel computers are compared for ease of programming

and performance. The traveling salesman problem was the test. Computers were:
iPSC in C), a network of Transputers (in Occam), and Sequent Ba~ance (in C).

Hey [PROG 19] discusses the reconfigurable interconnection of Transputers. Load

balancing and communication overheads are the discussion points.

IPROG 20) Cover, 1988 International Conference On Computer Languages.

Bagrodia (PROG 21 *] discusses programming on the Connection Machine and a
language, SC, an enhancement of C, which adds data types and primitives to
develop parallel programs. UNITY is the basis for the primitives. A data parallel
programming style is supported.
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McBryan [FROG 22] reviews PDE solutions for the Connection Machine.

Bershad [PROG 23 *] describes PRESTO, an object-oriented parallel programming
environment. Pre-defined object types, threads and synchronizing objects, are
given to simplify programming and allow multiple threads to cooperate. PRESTO
is written in C++.

Brandes [PROG 24] gives a knowledge-based parallelization tool.

Zima [PROG 25) describes SUPERB: a SUPRENUM parallelization tool. Important
classes of numerical algorithms hay a knowledge base to support their use.

Percus [PROG 26] discusses parallel software development on MIMD machines using
as an example random number generators for Monte Carlo simulators.

Storey [PROG 27] gives the monitor synchronization concept for defining the
highest level of parallelism possible in parallel algorithm design. Concepts
are for MIMD machines.

Karp [PROG 28) gives two styles: fork-join and single program, multiple data. A
general overview of the state of the parallel programming, including taxonomy,
software synchronization issues. The author concludes that the present state is a
sorry one.

Polychronopoulos [PROG 29] gives schemes for parallelization of arbitrarily
nested loops.

Oldehoeft [PROC 30; describes a prototype applicative language, Streams, and
iteration in a single assignment language (SISAL). SISAL is derived from a
dataflow language (VAL). An intermediate language is used to separate machine
dependencies from SISAL. Applicative languages are declarative, i.e., a set of
function definitions. Only data dependencies constrain the evaluation order,
giving a higher concurrency.

[PROG 31] Cover, Supercomputing, 1st International Conference, Athens.

Solchenbach [PROG 32) gives parallel multigrid methods for SUPRENUM. SUPRENUM
has mapping libraries for processors and communications libraries for data
exchange. Multigrid methods use iteration between coarse and fine blocks of
nodes to extend the accuracy and speed of numerical computations.

Dongarra [PROG 33 *]describes SCHEDULE and a transportable linear algebra based
library. SCHEDULE is a programming environment for explicit programming of MIMD
parallel computers.

Jayasimha [PROG 34] uses Markov chains to estimate completion times in barrier
synchronization. Implementation algorithms are given for barrier synchronization.

Francis [PROG 35] describes parallel invocation and cessation of processes. The
author provides a programming model of multiple simultaneous executing threads
which share a single program's code and data space. A parallel procedure call

is used to introduce and coordinate parallelism.
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Eisenstadter (PROG 36] examines locality of reference in MIMD symbolic
computations. Significant gains are seen if locality can be increased.

Weihl [FROG 37) analyzes the level of concurrency obtained in distributed
systems, especially transaction systems, when one uses abstract data types, for
example, in the presence of commutation between operations. Concern is placed
on system integrity features such a reliability and fault tolerance.

Bastani [PROG 38) advocates breaking systems into components of four classes:
abstract data types, functional, interface, and control. Two methods of use of
abstract data types are described.

Martin [PROG 39) describes a system for parallel procedure calls and models them
as network processes. Currently designed in C and C++. A parallel procedure
executes a procedure in n different address spaces in parallel.

Parkinson )PROG 40) evaluates the cost of summation operator in a wide range of
contexts, demonstrating that simple extrapolations from small number cases have
little relevance to the many processor case.

Terrano [PROG 41] developed a compiler for distributed memory reconfigurable
architectures, using programmer directives to program, partition, map, and
automatically generate communications code.

Preiss 'PROG 42] gives a semi-static dataflow method which partitions programs
:nto a collection of data flow graphs. A dynamic method of splicing data flow
graphs is used to dynamically create operating con'exts.

McGregor [FROG 43] is the introduction to a special issue of the Communications of
the ACM.

3.6 Human Computer Interface

Yau [HCI 1] discusses issues of visual languages and major features and the
impact on software development from three aspects: software visualization,
iconic representation, and graphical grammars.

Krishnamoorthy [HCI 2] proposes graphics primitives for algorithm animation.

Tomboulian [HCI 3] describes a graphical programming environment for the Navier
Stokes computer.

Cannon [HCI 4] describes an interactive software tool for optimizing execution on
vector-multiprocessors and which support organization and analysis of large
application codes. Memory hierarchy problems are identified, a database of global
data dependencies is provided and performance is estimated. (SIGMA)

Myers [HCI 5] provides a survey of user-interface development tools. A concise
table with both commercial and experimental tools is given.

Bailey [HCI 6] describes Voyeur, an application-specific, graphical views
programming tool. Three views are used: Icon, Simulator, and Vector.
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Brown [HCI 7 *] describes a large number of algorithm animation applications.
Many authors cite this reference because of its completeness and many
illustrations.

Hsai [HCI 8) uses pictorial programming instead of instrumentation of code to
begin the visualization and animation process. Called Pictorial Transformations
(PT), the graphics are converted into tuples (like association pairs in Lisp).
Both scenes and films are produced to view the underlying process operations in
the programmed algorithms.

3.7 Environments

Bisiani [ENV 1] describes a tool which is a planner for coordinating other tools,
allowing the optimum sequence to be followed. The tool is intended to handle
tedious and error-prone jobs in software development. Elements include: (1) model
of program, (2) high level descriptions to be semi-automatically transformed
into low level programs, (3) automation of sequence of tool use This tool is
added to the UNIX environment (Marvel).

Dart [ENV 2] provides a taxonomy of software development tools. This is separated
into

language-centered, based on one language
structure-oriented, allows the user to directly manipulate structures
toolkit environments, language independent tasks, and
method based, based on a development method

Three tables give a sampling of these.

Reeves [ENV 3 *] describes a programming environment for parallel multiprocessors
using Parallel Pascal and stressing system integrity features. NASA's MPP, an
SIMD machine, is the target architecture. The multicomputer is also considered.

Carle [ENV 4] describes the Rn scientific programming environment, which is
intended for scientific Fortran support of large codes Automatic parallelization
and vectorization are considered. Editors, execution monitors, and optimization
are included. (PFC and PTOOL)

Smith [ENV 5] gives Fortran parallelizing tools to aid microtasking of
Fortran-based vector supercomputers, including a parallelizer, a static analyzer,
and a dynamic debugger. (PAT)

Guarna (ENV 6] describes a support environment for large scientific programs using
X-Windows and NFS. Interactive compilation and optimization, integrated editors
and compilers, and portability are emphasized. Other managers are compared in a
table. (Faust)

Appelbe (ENV 7] (see Smith [ENV 5] provides a parallel programming toolkit
including a concurrency history graph, which educates as it automates. Cray
microtasking is supported. (START/PAT)

[ENV 8) Cover, Supercomputing '88.
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Guarna [ENV 9] (see [ENV 6]) describes an integrated setting for software
development. (Faust)

Ertel [ENV 10] describes the Intel iPSC/2 programming environment.

Parasoft [ENV 11] describes the CrOS operating system, CUBIX version of UNIX for
the hypercube, Plotix graphical capabilities, MOOSE asynchronous operating system,
debugger, and PC-CUBE, an education simulator.

Peinze [ENV 12] describes tools for the SUPRENUM machine including the
architecture, runtime environment, and tools. The explicit and implicit methods
which support both the program development tools automatic vectorizer,
communication libraries, mapping library, and make scripts. Program verification
includes a simulator and a debugger. The program evaluation component provides
graphics I/O, process visualization (time, statistical, or dynamic maps), and
profiling analysis to the subroutine level.

Dongarra [ENV 13 *] describes SCHEDULE, a standard user interface to several
shared memory parallel machines. Fortran is supported with calls to SCHEDULE to
enforce large grain data dependencies of the algorithm. Machine dependencies are
hidden from the programmer and are internal to SCHEDULE.

Pratt [ENV 14] describes a scientific programming environment with extended
Fortran, a configuration environment for setting up runs on parallel processors,
and a run-time environment for monitoring and controlling program execution.

Dongarra [ENV 15 *) describes SCHEDULE.

Pike [ENV 16] describes in terms of communication channels a concurrent window
system with interfaces. Complex programs are assembled from small self-contained
units which use these channels. The window system may run recursively to
implement sub-windows. This is a Windows software tool.

3.8 Support

Lopriore [SUP 1] describes tools for monitoring program behavior. A user
interface has been defined for program debugging, program performance evaluation,
and program structure analysis. These tools support many common debugging
techniques, performance indices, and structure statistics.

Martin [SUP 2] gives a general method to evalute the performance of a
supercomputer system.

Gupta [SUP 3] uses a trace compiler embedded in the debugger to evaluate VLIW
computers.

Mills [SUP 4] describes a three-part debugger for the DADO tree computer. A
network server, a window manager, and a parallel debugger are provided.

Reeves [SUP 5] gives a method for measuring the performance of the MPP on data
permutations, FFTs, convolutions, and arbitrary data mappings. The impact of
the high level language is also measured.
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Hough [SUP 6] uses animated patterns to explore debugging. Patterns of data and
control flow are used to verify fine grain, tightly coupled processes.
(Belvedere)

Burkhart [SUP 7 #] presents monitoring tools for debugging and performance
measurement. Tools are: breakpoint monitors, mailbox monitor for synchronization,
and bus monitor for bus load.

Callahan [SUP 8] describes a collection of 100 loops used to check vectorizirg
compiler preprocessors.

Eager [SUP 9] analyzes the compromises between speedup and efficiency in parallel
systems. Contention, communication, and structure are given as reasons for
inefficiencies of processor idle time. The average parallelism of the software is
given as the primary factor in the trajeoff.

Pan [SUP 10) describes the Concurrent debugger for the Intel iPSC.

Bohm [SUP 11] is concerned with monitoring and performance comparison in
realistic application areas. Models and measures are addressed for execution on
a dat :Clow machine.

Flower [SUP 12) gives software utilities for writing parallel code and porting
sequential code. [See PLOTIX and CUBIX discussion by Parasoft. (Comfort)]

McGuire [SUP 13] develops a method for measuring the concurrency in a workload.
The effect of this concurrency is related to system performance for the Alliant
FX/8.

So [SUP 14] presents a quick way to evaluate the performance of parallel
programs. A multiprocessor scheduling model is a set of identical processing
elements, and units of computation as task. Task marking and task tracing are
supported to achieve this result. A speed up analyzer is also described. (SPAN)

Allen [SUP 15) attacks the problem of nondeterminism during debugging. A
nondeterminism detector is provided as a debugging tool.

Feo [SUP 16] analyzes the complexity and structure of the Livermore Loops.

Griffin [SUP 17] gives a parallel processing simulator, a window/mouse based
debugging tool, and a set of realtime display routines to develop a parallel
process debugger. Interface in made to the Sun dbxtool.

Bremmerl [SUP 18 *] presents a layered model to describe debugging, performance
analysis, and visualization of multiprocessors and program execution.

Goldberg [SUP 19] represents distributed sequential processes as clones. The
Transparent Process Cloning tool keeps the clones of a process mutually
consistent. The tool has been used as a load scheduling method.

Kumar [SUP 20) gives a method for extracting general currency from large
scientific codes. The concurrency is shown to be far larger than expected for a
specific mode or type of parallelism.
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Whelan [SUP 21 *] provides optimal decomposition methods for matrices as the
matrix changes in dimension. Shared memory multiprocessors are considered.

Miller STI' 22 *) gi.cs a dobugging method which allows for incremental tracing.
The Parallel Program Debugger (PPD) is directed toward shared memory mailints.
Inter-procedural and data flows are analyzed using PPD.

Stone [SUP 23] describes speculative reply, a method of debugging, which creates a
concurrency map, and allows investigation through back-up of the process.

McCreary [SUP 24] developed a graph method which automatically determines grain
size for problem partitioning. A DRAM (distributed random access model) is used
to allow the inclusion of communication costs.

Cheng [SUP 25] provides a knowledge-based system for parallel programming. The
method is programming language-independent. The interprocess communications are
the target of the method, because the individual processes are sequential and
handled by normal methods. Distributed Event Based Language (DEBL) is a
specification level language allowing automatic execution of debugging, along
with the program itself, in the distributed environment.

3.9 Language Extensions

Gehani [EXTLANG 1 *] describes two examples using Concurrent C, an upward-
compatible C language. C+- is integrated with Concurrent C to provide data
abstraction and concurrent programming.

Carlton [EXTLANG 2) describes a parallel Prolog implementation which uses AND
parallelism across a network.

Shibayama [EXTIANG 3) gives transformation rules for concurrent object systems
made up of computational agents capable of concurrent execution and message
passing. The author also explores methods of splitting and merging concurrent
objects.

Stevenson [EXTLANG 4] gives a compiler based system for analyzing sequential
programs for concurrency. Data groupings, operations, communications, and control
flow are the subjects of the analysis.

Chen [EXTLANG 5] describes a mathematical notation language to address
programmability and performance of parallel machin~s. The language (Crystal)
expresses concurrency without unseen sequential dependencies. The algorithm
designer is responsible for the amount of currency, but the language allows for
concurrency to be easily expressed.

Grossman [EXTLANG 6 *] describes a language system for scientific engineering,
and mathematical application programming. Textbook mathematical expressions are
used. The syntax is like technical English. The screen editor supports four cases
of English, Greek, and math symbols.
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Wholey [EXTLANG 7] presents Connection Machine Lips. Objects, similar to arrays

or hash tables, called xappings, are used to express concurrency. CM Lisp is

embedded in Common Lisp. The author claims the CM Lisp is suitable for other

computes, such as, NON-VON and Ultracomputer.

Fisher [EXTLANG 8] provides an abstraction mechanism for SIMD machines allowing

powerful code optimization techniques to be applied. Fisher claims that this

compiler produces code of hand-crafted quality.

Ruppelt [EXTLANG 9] describes the principles of automatic transformation system
which transform specifications into parallel programs for the SUPRENUM. PDEs are

supported with vectors, matrices, domains, and grids at a high level of

abstraction. (SUSPENSE)

Halstead [EXTLANG 10 *] defines futures, a symbolic parallel programming method

and the MultiLisp language. The highly data dependent sequence of operations in
symbolic processing is supported by these constructs. (Multilisp)

Felten [EXTLANG 11] describes Coherent Parallel C, a concurrent language which

provides a parallel programming model with one entire process for each data

object. Transparent task assignments are made by the system. Communication calls

are not seen at the user level. CPC runs on the NCUBE. (CPC)

Dally [EXTLANG 12] defines a Smalltalk-based language for concurrent object

oriented programming. Distributed objects, locks, and synchronization support
is provided. The language is for fine-grain parallel computers. (CST)

Rosing [EXTLANG 13] describes a C-based distributed memory parallel processor

language. Interprocess communication and process control are primary concerns of

the development. The user defines a virtual machine into which data structures
are distributed. C++ was used to develop a prototype of this language. (DINO)

Wolfe [EXTLANG 14] discusses synchronization schemes for multiprocessors,
including data dependence, removal of synchronization points, random

synchronization, pipelining, barrier synchronization, and critical sections.

[EXTLANG 15) Cover of ESOP 86 European Symposium on Programming held in

Saarbrucken.

Triolet [EXTLANG 16] addresses automatic parallelization of Fortran programs
with procedure calls. The author provides a method for paralleizing CALL

statements.

Zorn [EXTLANG 17] discusses the extension required to parallelize Common Lisp
and compares this to thc requirements for parallelizing other concurrent Lisp
ystems is given including Spur Lisp.

Allen [EXTLANG 18] describes the IBM parallel compiler used in 3090 Vector
facilities.

Callahan [EXTLANG 19] provides an approach to implicitly programming distributed
memory parallel computers. The language describes distribution of shared array
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elements in the parallel computer.

Mehrotra [EXTLANG 20] describes a block-structured language for multiprocessor
programming. Array arithmetic, forall loops, and accumulation operators are
provided for fine-grained concurrency. An applicative or functional procedure
invocation is used for coarse grain compiler assistance. (BLAZE)

3.10 Operating System Extensions

Chen [EXTOS I *) presents a dynamic memory management system which tracks
dependencies and improves speedup using on-the-fly sorting of data elements.

Beck (EXTOS 2] shows how Sequent extended UNIX single-process programming models
to support parallelism, including extensions to C, Fortran, and their assemblers
and linkers to provide declaration and intializing of shared data. The author
also discusses run-time support for shared memory initialization, expansion and
heap management and provides a parallel multitasking model for C++.

Ellis [EXTOS 3] gives method for dynamic storage allocation for shared memory
multiprocessors, providing four algorithms each for a different granularity. The
author describes the conducted experiments to compare the performance of the 4
schemes.

Wolfstahl [EXTOS 4] provides special system calls to support mapping of processes
to processors. Mapping directives are used to signal forthcoming changes in
communications patterns and occurrence of mapping related events.

Bain [EXTOS 5) describes Interwork II, the iPSC concurrent workbench,

Tolle [EXTOS 6] describes UNIX utilities for the NCUBE.

Angus [EXTOS 7) describes Fortran CUBIX, an 1/0 facility of the CrOS for
hypercubes.

Schwan [EXTOS 8] describes an operating system construct to implement
communication graphs linking multiple tasks of a parallel program. Global
services are also provided by the construct. (Topologies)

Gait [EXTOS 9] gives a process scheduler which adaptively controls a two-tier
system moving processes between local memories using a shared bus.

Schroder [EXTOS 10] describes a decentralized and distributed operating system
in an MIND environment for process execution and communications support. This
system operates on top of SUPRENUM. (PEACE)

Stevenson [EXTOS 11] analyzes the problems associated with distributing many
virtual processes across a multiprocessor, and discusses the issues which must be
resolved for operating systems.

LeBlanc (EXTOS 12] describes controlling set of processes which interact to

execute a function. This paper discusses processes not completely parallel, but
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which must be partially ordered to proceed in parallel. A balanced binary tree
structure is used to organize the execution, which was implemented on the BB &
N Butterfly.

Malony [EXTOS 13] describes a message-passing facility for shared memory
multiprocessors, implemented in a portable C library. (MPF)

Vornberger [EXTOS 14] describes a method used to process Prolog programs on a
network of personal computers. The author discusses TERM, AND and OR forms of
parallelism.

Rahgozar [EXTOS 15] describes a distributed data base system which increases
parallel processing efficiency by means of semantic information of transactions
and data.

Garg [EXTOS 16] defines two constructs which support high level specification
of distributed systems: the handshake and the unit. Handshake is a remote
procedure call for multiple parties. The unit construct provides synchronization
and call restrictions on the handshake. These are part of a formal model, which
can be automatically analyzed, called Synchronous Token based Communicating State
(STOCS). Addition of these constructs to C to allow concurrent programming are
given. (ConC)

Fleckenstein (EXTOS 17] describes a utility for make which operates on multiple
workstations to achieve significant speedup and ease of operation. The version of
the UNIX make tool controls compilation and linkage of a number of programs across
a network.

Baalbergen [EXTOS 181 gives his version of parallel make and gives an analysis cf
performance, The target is multiple processor systems.

3.11 Languages

DiNitto [LANG 1] discusses future programming languages, basing projections on
areas of past under-accomplishments in languages despite project goals and
extensive research.

Perrott [LANG 2] describes an array and vector language which is architecture
independent. (Actus)

Tripathi [LANG 3] describes an object oriented concurrent language and inter-
object communication support. Concurrency and synchronization between objects
have been the focus. (SINA)

Sharpiro (LANG 4] provides an overview of Concurrent Prolog, a parallel logic
oriented language. (Concurrent Prolog)

Baldwin [LANG 5] describes a parallel constraint language. The constraint
languages are special case of predicate calculus methods and are based on
abstract systems of constraints, such as logic programming. (Consul)

Tick [LANG 6] compares parallel logic programming architectures, both derived
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from Prolog. The author compares the speed of developing OR- and AND- logic
programs.

Clark (LANG 7] describes a parallel Prolog language. (Parlog)

Yamazaki [LANG 8] explores object-oriented programming at the low level
(operational units and registers) and high level (interacting processors).

Hansen (LANG 9] presents a Communicating Sequential Processes (CSP) and Pascal
based language for parallel programs. Concurrent agents communicate through
unbuffered channels. The language is written for the Encore Multimax. (CSP)

Karp [LANG 10] compares Fortran languages for these computers: Alliant FX/8, BB &
N Butterfly, Cray X-MP, ELXSI 6400, Encore Multimax, Flex/32, IBM 3090/VF, Intel
iPSC/2, and Sequent Balance.

Gelernter [LANG 11] discusses issues in parallel languages. This article is the
introduction to a special issue of Computer on parallel languages.

Mundie [LANG 12 *] discusses parallel processing in Ada, concentrating on the
real time environment and Ada's tasking model.

Goldman (LANG 13] describes a multiprocessing Lisp designed for multiprocessors,
which supports medium-grain parallelism, explicit parallelism, and run on a
shared memory space multiprocessor. (QLisp)

Polychronopoulos [LANG 14] describes compiler optimizations and their impacts
on architecture design. Automatic detection of parallelism is the concern.
Barrier synchronization is identified as one of the serious sources of runtime
overhead.

Guzzi [LANG 15] describes Fortran for the vector multiprocessor Cedar computer.

Girkar [LANG 16] describes methods of identifying data dependencies for use in
automatically vectorizing and parallelizing by compilers. A program
transformation called loop spreading is used to execute adjacent loops with
interloop dependencies.

Welch [LANG 17] describes occam as a language for the Transputer, and shows how
the language supports abstraction, structuring, and information hiding.

Clapp [LANG 18] gives a demonstration of Ada operations on a hypercube. The paper
concentrates on the runtime system required for a machine independent support of
Ada. The author also describes implementation of this system on the hypercube.

DeForest [LANG 19] describes a tagged demand driven dataflow model of parallel
computation and how it runs on the hypercube. The declarative language Lucid is
also presented. (Lucid)

Lake [LANG 20] reviews the approaches to parallel languages taken in Fortran
77, SISAL, occam, Fortran 8X, and concurrent Prolog.
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Jordan (LANG 21] addresses the need to direct the activity of a large number of
processes and the structure of parallel languages for large-scale computers.
(Force)

Ahuja [LANG 22] describes the distributed language Linda, the demands for its use,
programming methods, and the Linda kernal. (Linda)

Whiteside [LANG 23 #] gives the results of a Linda experiment on a Local Area
Network of Digital Equipment Corporation VAXs. A matrix multiplication ''master''
is given. Several computational examples are analyzed.

Lunberg [LANG 24) gives a parallel Ada system on an MIMD multiprocessor. A single
unmodified Ada program with a number of tasks executes in parallel on different
processors, transparent to the programmer. The run-time system controls
allocation and migration of the tasks.

Watson [LANG 25] provides a strong argument for using inherently concurrent
languages for parallel problem solving. He advocates a real life problem
specification which is declarative.

[LANG 26] is the cover of the Institution of Electrical Engineers (IEE)
specialist seminar on design and application of parallel digital processors.

3.12 Operating Systems

Bradley (OS 1] describes a flexible operating system experiment testbed for
hypercube machines. The testbed was designed to investigate communication
paradigms, task scheduling, global virtual memory, heterogeneous system resources,
and peripheral management. (Picasso)

Krumme [OS 2] describes the NCUBE operating system, debugging support,
communicaLiuns, and design. The debugger provides a top-level view of the
progress of a computation over time.

Salmon (OS 3] describes a multitasking operating system (MOOSE) for the hypercube
used to research both load balancing and the decomposition of irregular and
dynamic problems. (MOOSE)

Pierce (OS 4] describes the NX/2 operating system for iPSC/2. (NX/2)

3.13 Architectures

Dinning [ARCH 1] surveys methods of synchronization of MIMD parallel computers.
Computers covered are: BB & N Butterfly, Cedar, HEP, HM2p, Sequent, Transputer
and the Ultracomputer.

McBryan (ARCH 2] reviews parallel computer architectures for computational
science, concentrating on PDE solutions.

Snyder [ARCH 3] gives a classification scheme extending Flynn's classical one.
Categories are: von Neumann, packed von Neumann, SIMD with no addressability
(MPP, Connection Machine, and systolic arrays), SIMD multigauge (splitting
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multipath), addressable SIMD (Illiac IV and CM/2), VLIW, MIMD multigauge, and
MIMD parallel (Ultracomputer and Cosmic Cube).

Casavant [ARCH 4] is a panel announcement listing architects and programming
tool builders of reconfigurable parallel computers.

Martin [ARCH 5] addresses the general issues of building a performance benchmark
for vector and parallel computers.

Hack [ARCH 6] discusses the teraflop computer and the lack of direction toward
general purpose computing, which could realize large parallel speed increases.
The author discusses potential limitations of speedup for general purpose
computing.

Hwang [ARCH 7] surveys supercomputing architectures, including the state of

software tools.

Harp [ARCH 8] describes the reconfigurable Transputer project and its
architecture.

Bronnenberg [ARCH 9] describes an architecture built to support object-oriented
parallel processing. An associated language, (POOL and DOOM), is also described.

Treleaven [ARCH 10] describes commercially available architectures and explores
their potential applications.

3.14 Technology

Bell [TECH 1] discusses the new forms of computing becoming available due to
highly parallel machines.

3.15 Additional References

As this survey went to press IEEE's Computer released a special issue on
Visualization in Computing. The following articles are the latest references in
visual programming:

Ambler, A.L.and Burnett, M.M., ''Influence of Visual Technology on the
Evolution of Language Environments,'' pp. 9 -2 2 .

Roman, G., and Fox, K.C., ''A Declarative Approach to Visualizing

Concurrent Computations,'' pp. 25 -36 .

Lehr, T., et al., ''Visualizing Performance Debugging,'' pp.38-51.

Kramer, J. , Magee, J., and Ng, K., ''Graphical Configuration Programming,''
pp.53-65.

All are from Computer, Vol. 22, No. 10, October 1989.
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Section 4. Commercial Literature Survey

4.1 Commercial Support

Table 4-A lists commercially developed parallel programming 
tools. These were

received in response to a letter requesting parallel processing tool

information.

COMPrLER/COMPANY TQ1L/AEAD

Gesellschaft Fur The Filter/ Filtered process data

Numerische Supperrechner Graphical reporting

MBH SUPRENUM

The Dynamic Map/ Displays activities of a

Graphical distributed application

The Statistical Map/ Generates a final

Graphical evaluation of the

process data & displays

some statistics on the

performance of a

distributed APF.

Automatic Vectorizer/ Automatically transforms

Algorithm existing Fortran 77

codes using a vectorizor

Automatic parallelizer Parallelizing sequential
programs

Communications Library Facilitates programming

and testing of grid-

based problems

Mapping Library Mapping of processes

Make Provides comfortable
environment to initiate
runs on simulator or

SUPRENUM hardware

Fortran (Automatic
Vectorizor)

Helios/Distributed Helios AMPP Assembler macro pre-

software Limited
processor for

programming in high-

level macro notation

(includes 30+ macros &
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ability to create new
macros)

Butterfy/BB & N Math advantage Industry standard
Butterfly Fortran subroutine Library with
Butterfly LISP 200+ frequently used
Butterfly Ada mathematical algorithms
Butterfly C

iPSC/2 VECLIB Math function; library

Intel extensive library of
arithmetic functions
that can be called from
a Fortran program

BLAS

V e c t o r

multiplication,
division, scaling
Transcendentals: SIN.
COS, EN, EXP
Gather, scatter
(versions: single.
double, complex,
integer)

DECON (Concurrent debugger)
VAST-2 Fortran vectorizor

User Software Library:
Numeric Software

LINPACK Linear equations
SPARSEPACK Sparse matrices

FISHPACK 3-d fast poisson solve
SUPRENUM Special communication

subroutines
NAVIER Fluid dynamics code

which solve NAVIER-

STOKES equations

VP (Vector Processors) Arithmetic Control 1) Vector arithmetic:

Series/Star Processor (ACP) clear, fill, Star add,

Technologies. Inc. macros subtract, multiply,
divide, square root,
square signed square

2) Multiple-operation
arithmetic (vector
multiple and add)

DAP (Distributed Array Hardware, processing
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COMPUTER/COMPNy j DECRPT ION

Processor)/Active Memory capabilities, applications,
Technology (A.T) technical reports

Scalable Parallel PARDO programming model Used as extension
Supercomputer (SPS-2)/ to Fortran & C to
Myrias Comnuter Corp. express parallelism in

applications

MPF Myrias parallel Fortran

MPC Myrias parallel C

G System Target language for the
compliers

Myrias UNIX

Horizon Tera Computer Future Supercomputer Automatic parallelizing
Company 1993 (MIMD) compilers Forcran and C

FLEX/32 Multicomputer Weitek Floating Point
System/ Library
Flexible Computer Corp.

QTC Scientific Floating
Point Library

Programming and Operating
Environments:

UNIX System V Sequential or concurrent
operating environment

Concurrency Simulator Simulated M12OS
under UNIX System V concurrent operating

environment

Multicomputing Multi. Concurrent operating
tasking Operating System environment
(MMOS)

Concurrent C

Concurrent Fortran
Ada

Concurrency Simulator
Debugging Tool

FPS M64 Series Program Development

Floating Point Systems Software (PDS)

Optimizing Fortran 77
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COMPUTER/COMPANY TOOL/AR DESCRIPTION

Compiler
Optimizing C Compiler
Overlay Linker
Object Librarian
Interactive Debugger
Math Library

Computing Surface/ Development Environment:

Meiko OS

VMS
SUN OS

Standard editors and utilities:

Fortran 77
C
Pascal

aParallel Fortran

-1/ Architecture
:nternational
Parallel Machines

Cogent Research XTM Linda Programming A parallel programming
Parallel Computing Environment environment
Environment
Cozent Developing Parallel Versions:

C++
Fortran

Trace/300 Series Trace Compiler:
Multiflow Computer

Fortran
C
Pascal
Common LISP
Ada

Enhanced Math Libraries
I/O Libraries
String Manipulation Libraries
UNIX System Call Libraries
VMS-Compatible System Call Library

TRACE/UNIX:

Compilers
Libraries
Debuggers
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COMPUTER/COMPANY IQL/AR DESCRIPTION

Profiles
Source Code Managemeut Tools

Computer System Transputer-based

Architects/ Parallel Processing

TransDuter Chip Products

Express System Parallel operating

(Added to existing environment

operating system)

C
Fortran
Parallel Source Level
Debugger
Parallel Performance
Monitor

Runs on a variety of
parallel computers

The Connection Machine/ C* Assembly language of

CM-2 Paris CM-2

Thinking Machine *LISP
FORTRAN
CM-LISP

NCUBE Hypercube Supercomputing

NCUBE Axis UNIX-like operating

Fortran 77 system
C
Graphics/four

ORYX Super
Signal Processor Graphic Flowgraph Editor

OFlowgraph Compiler

Loader

E & S Parallel Programming Manual Methods Parallel FORTRAN

Environment (ESPRE) compiler directives

Evans & Sutherland SCHEDULE library
C Thread library

Automatic Methods Compiler Optimization
ES/FORTRAN compiler

Math libraries with

parallel algorithms

Support Perf. tuning (gprof)
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COMPUTER/COMPANY IN~L DESCRIPTION

Debugging (gdb)

Parallel program
building (make)

Compiler ES/FORTRAN
ANSI std. with VAX

extensions
Multiple pipeline

optimization
PCF parallel programming

directives

Operating System ESIX

Library IMSL, NAG, P-STAT, MATH

ADVANTAGE, ELSPACK,

UNPACK, BLAS, LAPACK

FFTr
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Section 5. Reviews of Selected Articles and Information

Articles identified with a * are reviewed in this section.

5.1 Algorithms

Lager is reviewed to provide an overall concept for a graphically-oriented
signal processing algorithm development environment. Chen is reviewed because
of the importance of data dependencies to parallel programming, and the
foundation he provides for building data dependency tools. McCroskey's work
matches immediate SIMD programming requirements. O'Hallaron gives an
implementation of a Kalman filter on the Warp.

5.1.1 Signal Processing Algorithm Environment

Lager [Lager, D. L. and Asevedo, S.G., "SIG - A General-Purpose Signal
Processing Program,'' Proc. IEEE, Vol. 75, No.9, September 1987, pp. 1322-
1332. [ALG 1]

SIG is an environment which supports the use of several signal processing
methods with a given application.

The functions of SIG are

simulation and reading of signals for input to the system
arithmetic and scaling operations on the signals
correlations, time-frequency transformations
model coefficients
curve sitting and plotting
generation of text files for reporting

The key to efficient use is a dual mode user interface for either expert or
casual users. The user menu is programmable and new functions may be easily
added. The user interface supports starting new programs under its control,
and operating system commands can be given to the system. A database is used
to store text files and parameters. Databases for time signals, frequency
spectra, real and complex coefficients are stored is another database.

The components of SIG are

command processor
data base
parameter file
menu package
help software
graphics software
user interface
signal processing
user commands
user software

A cou.and summary, given on pages 1328 and 1329, gives a wide variety of
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supported commands.

SIC has been widely distributed and copies are available from the National
Energy Software Center, Argonne National Laboratory and from Techni-Soft,
Livermore, CA.

The usefulness of SIG to the parallel processing tool environment is that a
similar set of functions is needed for algorithm development. Additions must
be made to allow for the interaction with parallel architecture models but SIG
or a similar environment is a useful sequential starting point.

5.1.1 Data Dependency Tool

Chen, G.H., and Chern, M., ''Designing Parallel Algorithms from Forests and
Multistage Graphs,'' Proc. The Twelfth Annual International Computer Software
& Applications Conference, Chicago, October 5-7, 1988, Editor: G.J.Knafl, pp
292-298. [ALG 5]

Chen gives a three-stage process for designing parallel algorithms, expressing
the dependencies using a data dependency graph (DDG). The three stages are:
finding a solution method, constructing a data dependency graph, and designing
the algorithm from the dependency graph. The DDG is essential for detecting
parallelism and Chen has identified four classes: forest, multistage, regular,
and semi-regular. Data dependency graphs are constructed from nodes and arcs.
Nodes represent each intermediate value and arcs represent the dependencies.
Trees representing a root with other nodes having a single input are common
in parallel processing. Stages occur in recurrent equations and dynamic
programming algorithms.

A forest is a graph containing several disjoint trees. A multistage DDG made
up of multiple disjoint stages. Chen shows how these are mapped into shared
memory, linear arrays, multiple linear arrays, and two-dimensional arrays
using the DDG, and also shows an approach to computing identical intermediate
values.
The design of a parallel processing tool set requires that data dependencies
be understood and supported through node-arc formulations and approaches such
as Chen's.

5.1.2 Systolic Proramming Tool

McCrosky, C., ''Realizing the Parallelism of Array-Based Computation,''
Parallel Computing,Vol. 10, pp. 29-43, 1989. [ALG 8]

McCrosky provides array operations for SIMD machines and describes algorithms,
and finds the relationship of communications and parallelism to be an
important part of algorithm development. Array data structures and operations
provide an abstraction constraint which allows a concise statement of the
algorithm. Arrays correspond to many data structures in the problem.
Parallelism is naturally expressed through arrays. Three methods are given for
using parallel processors: smart compilers for automatic detection of
parallelism in existing languages, use of explicitly programmed parallelism,
and new languages with semantics which allow the expression of parallelism.
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McCrosky concludes that a new generation of languages are necessary for highly

parallel machines.

5.1.3 Parallel Aleorithm ImDlementation

O'Hallaron, D.R. and Radhakisan, S.B., ''Parallel Implementation of a Kalman
Filter on the Warp Computer,'' Proceedings of the 1988 International
Conference on Parallel Processing Algorithms and Applications Vol. III,
Pennsylvania State University Press,August 15-19, 1988, pp. 108-11. [ALG 10)

Matrix multiplications, triangularization, coordinate transformation, and
Jacobian transformations are used to develop a parallel Kalman filter
algorithm. The Warp computer is used for the processing. The Warp is a linear
array of processors is suited to the Kalman filters compute-intensive nature.
A directed acyclic graph (DAG) is used to express the algorithm, and an
associated table gives the computational requirements for each operation.
Nodes and arcs are labeled with data items and represent the precedence
relation. These DAGs are convenient ways to express linear systolic array,
data flow, and shared memory MIMD problems. The mapping to the Warp uses a
topological ordering where each operation is assigned to Warp cell in the
precedence sequence. The cells receive the results of the processor ahead of
it, performs its operation, and sends the results to the following cell. Data
is stored locally when possible, but is shifted along through the cells when
global access is required. Mapping was not optimal, no attempt was made to
exploit all the parallelism, and only six cells of the Warp were used. One-
half the sample time was consumed by restarting the computation from the Sun
controller for each sample.

5.2 Library

5.2.1 Standard Libraries

Snelling, D.F. and Hoffman, G., ''A Comparative Study of Libraries for
Parallel Processing,'' Parallel Computing, 8,pp. 255-66, 1988. [LIB_02]

Snelling reviews existing libraries on parallel supercomputers. Snelling
believes that Fortran has inherently sequential bias and that constructs such
as COMMON and DATA lead to poor parallel programming. He identifies occam,
Ada, Concurrent Pascal, and SISAL as parallel languages for scientific
applications. Data control, debug effects, hardware affinity and
complexity/ease of use are the evaluation terms. All libraries have TEST-AND-
SET operations which allow for intertask synchronization. Cray, IBM, ETA, FPS
T-Series, and Snelling's portable library (SPLIB) are reviewed.

Data control is identified as the most important aspect of parallel
programming. Five types of Fortran data control are given: private, invariant,
result, reduction, and message.

Debug effects are exacerbated in parallel programming because of the
difficulty in analyzing debug dumps. Effects are grouped into stampede,
bystander, deadlock, irreproducibility, and Heisenberg. The stampede effect is
to the inability of a single process to stop all others when an error is
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encountered. The bystander effect when one process corrupts another processes's
data space. The deadlock effect occurs when synchronization errors cause all
processors to stop or trade synchronization signals without progressing. The
irreproducibility effect is due to the non-deterministic nature of parellel
programs. This may be proper because round off differences can result in different
answers, using different proper paths through the problem. The Heisenburg effect
is the impact of debugging instrumentation or diagnostics on the results, creating
error through perturbation of the operational environment.

Hardware affinity of libraries is the change in library structure or content due
to the hardware architecture or the architectural history. Complexity and ease of
use issues are a measure of the number of paths into the library, number of
parameters of subroutines or arrays, the number of memory levels, and the number
of altered lines of code required to convert a parallelization of a simple
program.

Standard Parallel Library (SPLIB) is built on constructs of processes, barriers,
channels, and shared matrices. A process is a sequence of independent operations,
a barrier is a form of synchronization which allows a set of processes to complete
together. Channels provide synchronous communication between processes and the
shared matrix provides communication between processes and a large globally-
shared memory. Access to the SPLIB is through Fortran 77 subroutine calls.

5.3 Simulation

5.3.1 Time Cost Model

Ammar, R.A. and Qin, B., ''A Technique to Derive the Detailed Time Costs of
Parallel Computation,'' Proceedings Computer Software & Applications
Conference, 5-7 October, 1988, Chicago. COMPSAC '88 pp. 113-119, 1988.
[SIM_01]

Ammar develops computation structure models which are used to derive the time
costs of parallel processing. Five categories are defined and described using
directed graphs for control and data flow. The time costs for each is
determined. To apply the method, a parallel computation is recursively reduced
to a sequential one using combinations of the five categories of parallel
structure. The method requires expansion to include varying numbers of
processors, contention, execution overhead and environment.

5.3.2 Visual Prozramming

Stotts, P.D., ''The PFG Language: Visual Programming for Concurrent
Computation,'' Proceedings of the 1988 International Conference on Parallel
Processing Algorithms and Applications Vol. III, Pennsylvania State University
Press, Aug 15-19, 1988. [SIM08]

Stotts describes Parallel Flow Graphics (PFG) which allows expression of
concurrent, time-dependent computations. Timed Petri nets and hierarchical
graphs are the basis for the semantics. Each syntactic structure has a direct
translation into a portion of a timed Petri net model from which, concurrent

11-35



properties can be analyzed. Visual programming with bit-mapped graphics and
icons are used. The PFG is a convenient way for the user to specify the
mathematical model of an algorithm. Both static and dynamic program analysis
through execution of the hierarchical Petri net model is used. A formalism
called the Hierarchical Graph (HG) software system model which represents
time-dependent systems (software and hardware). Three models are used: data
model, static program model, control flow model.

The data model uses graphs of structure and interrelationships among
collections of data to be transformed by the computation under study. The
static program model is a representation of operations on data a set of non-
overlapping blocks. Operations within each block are sequential. Each has its
own local data area and may be data copied in or out as required. Complete
determination of operations that alter data is supported. The control flow
model expresses the possible parallel execution threads of a concurrent
computation. A thread is a sequence of basic blocks form the static program
model. The control flow mod.! is a timed Petri net interpretation.

The graphical set of icons include a base down triangle for concurrercy
branching, a half-circle for a non-deterministic branch, a base up trianEgle
for join, and a rectangle for a sequential block. The block has an associated
data transformation which is entered, displayed, or modified by clicking on
the icon. Each arc connecting the icons is labeled and is governed by
constraints Timing information is handled by associating durations with
blocks. Primitives are primitive (sequential) or parallel. A recursive method
is imposed to reduce parallel operations to a timed primitive one for time
estimating purposes. Minimum and maximum timed modes are derived through path
analysis of the concurrent reachability tree during the time analysis.

Uses of PFG include the dual timing, detecting improper accesses of shared
data, and detecting deadlocks. The system is developed on the Sun Workstation
and languages such as Ada and Modula-2 are also possible in the PFG
environment. Executable code is generated after analysis by the Petri net
method.

5.4 Mapping

5.4.1 Optimal Mapping on Hvyercubes

Cherkasky, V., and Smith, R., ''Efficient Map Program and Implementation of
Matrix Algorithms on a Hypercube," Journal of Supercomputing, 2, pp.7 -2 7

(1988). [MAP05]

Cherkasky is concerned with the optimal speed up for parallel matrix
operations on hypercube architectures (specifically NCUBE). The overhead costs
of communications and computation are the parameters he controls. The maximum
number of processors for optimal solution is the target and the authors
considered square matrices only. A toroidal mesh topology is the decomposition
target. A matrix/submatrix partitioning notation is used. Matrix
multiplication is performed ( A X B - C ) wherein each node holds a portion
of A, B, and C. Communications require orthogonal movement of A and B and
computation of C. Cherakassy's algorithm has reduced the communication time
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over that of Fox [ALG 141. The reason cited is that dnly one complete circuit of
the toroid is necessary for A and B to pass though a given node. Cherakassy also
examines Gaussian elimination. In the analytical models as the submatrix size n
increases the arithmetic increases by 0( n3 ) for both Gaussian elimination and
matrix multiplication. In comparing the two algorithms the complexity of
considering communications tradeoffs and computational size is exposed.

5.4.2 Novel Ma]ning for Massive Parallelism

Muhlenbein, M. C., Gorges-Schleuter, M. and Kramer, 0., ''New Solutions to the
Mapping Problem of Parallel Systems: The Evolution Approach," Parallel
Computing, 4, pp.269-79,(1987). (MAP 11]

This article contends that massively parallel machines are better understood
by models derived from the natural sciences. Simulation of these models is
best done by the massively parallel computer. The programming model is for
SUPRENLM. The model presented is evolutionary, that is, based on a model of
evolution. The mapping problem presented here is the graph representation
consisting of process set and a communications matrix. The process structure
has both static and a dynamic components. For the dynamic case the
communication matrix must be created during the runtime. The process set is
partitioned into clusters, clusters are then randomly assigned to processors.
Evolutionary theory is applied through a three-step process: replication,
mutation, and selection. The processor mapping is in terms of creation,
randomization, and selection. Applications are made to graph partitioning and
the traveling salesman problems and results are rated as surprisingly good.
The method is a form of data level parallelism programming.

5,4.3 Bounds Checking

de Jong, V.J., ''Symbolic Bounds Checking in a Matrix Language,'' Proc. 1988
Int. Conf. on Parallel Processing, Vol. III, Penn State University Press,
pp.73-80, Aug 88 [MAP 41]

de Jong describes a symbolic range checking tool which generates run time
restrictions on input variables. APL, SAS/IML, and MATLAB are given as
interpreted matrix languages. These lack performance because they are not
compiled but are very useful in rapid prototyping. One of the requirements of
matrix languages is that the user should be isolated from matrix notation
problems, and associated type checking and dimension bound checking issues. de
Jong gives facilities that should be provided to the user input
restrictions, error recovery, help, and database interfaces. de Jong developed
CONDUCTOR, a statistical software matrix language allowing experienced
technical users to avoid matrix notation issues. He takes advantage of the
simplified language structures necessary to express matrices to define a
symbolic approach to checking ranges. The imposed restrictions are: index
variables are not reassigned inside conditional statements and index
expressing are monotone increasing or decreasing. The matrix language syntax
is given.

5.5 Machine Independent Programming
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5.5.1 Granhical-Machine Independent Prorammin2

Browne, J.C., Azam, M., and Sobek, S., ''CODE: A Unified Approach to Parallel
Programming,'' IEEE Softvare, pp.10-18, July 1989. [PROG03]

and

Sobek, S., Azam, M., and Browne, J.C., ''Architecture and Language Independent
Parallel Programming: A Feasibility Demonstration,'' Proceedings of the 1988
International Conference on Parallel Processing Algorithms and Applications
Vol. III, Pennsylvania State University Press, Aug 15-19, 1988. [PROG 11)

The goal of this University of Texas at Austin team is to unify approaches to
parallelism to provide portability and higher abstraction level programming.
Conventional languages are extended to handle parallelism on shared memory
computers. Operations for synchronization are added: Lock, unlock, and
semaphores. Dependencies are resolved by regulation of access. Message passing
mechanisms are used for partitioned memory architectures. The Computation-
oriented Display environment is a graphical programming system which allows
the user to define computational units and dependency relations. The
computational unit defines the functionality and firing control. Functionality
is the transformation on the input set to the output set. Firing rules specify
the states of input dependencies which allow the unit to excute. The
Dependency relations compose the computational units into a parallel
structure. Dependency types in CODE are data, demand, mutual exclusion, and
control.

Architectural independence is a key goal of the CODE system. This is achieved
by the following:

Separating dependency specification from computational unit
specification
Separating firing rule specification from functionality specification
Raising the abstraction level at which dependencies and firing rules
are specified

CODE is a version of generalized dependency graphs. Each graph node represents
a computational unit or a subgraph. Each arc represents a dependency.
Languages used to specify computational units are Ada, C, Fortran, and Pascal.
Firing rules are predicated on the state of the computation. Programming is
graphical: creation of nodes and arcs and with support for windows allowing
detailed information to be associated with the node or arc. The steps in
programming are

Draw dependency graph
Fill in forms to define dependencies among computational units
Fill in forms to define degree of parallelism and functional code of
the computational units
Specify firing rules
Invoke CODE to create a machine independent program specification
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The functional code is entered in a sequential form and CODE generates the
necessary headers and expands it to the degree of parallelism specified.

When it is ready to run a machine dependent translator is used to generate
code for a given architecture. The translators generate code to implement
communication and synchronization among computational units. These translators
have been created for The Sequent Balance, Digital Equipment Corporation's VAX
clusters, Intel hypercube, and Cray XMP. Code is implemented on the Sun in C,
and uses SunView (TM of Sun Microsystems) graphics.

5.5.2 High Abstraction Programming

Chandy, M.C., and* Misra, J., ''Architecture Independent Programming,''
Proceedings: Third International Conference on Supercomputing, Supercomputing
'88, Vol., III, pp.345-351, 1988. [PROG 10]

Chandy advocates that the programmer should be able to choose the programming
style best suited to the development of correct maintainable programs and
design for machines best suited to the selected approach. Functional languages
should be developed by the programmer and the computer architects should
develop machines which run the languages effectively. Programming notation

should provide machine independent forks, joins, and messages. This avoids the
explicit representations in a given architecture. Note that MIMD and SIMD
architectures do not necessarily support the same parallel constructs. UNITY
is a specification notation, a programming notation and a proof system.

UNITY was developed to maximize flexibility in language, architectures, and
compilers; to optimize portability and efficiency; and to resolve the
conflicts between these goals. Language standardization is not likely, so a
variety of languages are anticipated. Likewise architectures have immense
diversity. Compilers for parallel systems cannot be standardized because
programming methods are too immature to incorporate. Portability is needed
because of the rapid flux of architectures. Efficiency and associated
performance are critical to the use of parallel computers and the use of
machine dependent primitives. Chandy offers a design method to resolve the
conflicts between these goals. Stages in his design are general strategy,
architectural issues, and machine tailoring. They are supported with a
specification notation, programming notation, and a proof theory.

5.5.3 Tools for Connection Machine Prorrammin2

Bagrodia, R., and Chandy, K.M., ''Programming The Connection Machine,''
Proceedings: 1988 Intl. Conference on Computer Languages, Miami IEEE Computer
Society, Oct 9-13, 1988, pp. 50-57. [PROG 21]

The authors describe a language called SC which makes it easier to write
programs for the Connection Machine (CM). SC is based on the UNITY approach
(See [PROG 10] above.) and is an enhancement to C, adding data types and
primitives to develop parallel programs. The purpose is to make programming
easier, supporting MIMD in addition to the SIMD mode of the CM, adding
machine-dependent programing to obtain final efficiencies. The UNITY based
notation is compiled into C* and executed on the CM. Primitives and data
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structures common to scientific programming are supported (arrays, sets of
indices, and lists). The primitives defined operate on the SC declaration type
index-set. The operational primitive classes are: reduction - binary operation
on a set of operands, parallel computation - (par) which operates on a set of
statements, sequence - to handle non independent operations, and equations -
the central form of expression.

5.5.4 Object-Oriented Parallel Prozrammin

Bershad, B.N., Lasowska, E.D., and Levy, H.M., ''PRESTO: A System for Object
Oriented Parallel Programming,'' Software Pract. and Exp. 18(3), pp. 71 3-32 ,
Aug 88. [PROG 23]

Bershad describes an object-oriented programming environment for
multiprocessors, using a set of predefined object types to simplify parallel
programming under Dynix on Sequent Balance and Symmetry computers. C++ is the
language used. He observes that object-oriented programming makes it easier to
understand distributed systems programming. Problem decomposition and run-
time synchronization are details described by an object model. Each object
performs a small part of the problem and maintains its own consistency
checking. Efficient concurrency and synchronization mechanisms can be worked
out and supplied to the user in a higher level of abstraction. PRESTO allows
redefining the primitives to avoid limiting the user to a particular paradigm
of programming. Several classes are provided to support the parallel
programmer in using the constructs of threads and synchronization. Threads are
created or started. Synchronization constructs are relinquishing locks, non-
relinquishing locks, monitors and condition variables, and atomic integers.

A run-time library system supports PRESTO to map user threads onto physical
processors and to provide access to a global shared memory where objects
reside. A single scheduler object keeps track of all threads which are
runnable but not yet running and to prevent duplicate running on different
processors. Migration of threads is possible. Costs of threads and
synchronization are provided.

5.6 General Programming

5.6.1 Scientific Programming Environment

Dongarra, J.J., and Sorensen, D.C., ''A Portable Environment for Developing
Parallel FORTRAN Programs," Parallel Computing, 5, pp.175-86, 1987. [ENV 13]

Dongarra, J.J., SCHEDULE: Tools for Developing and Analyzing Parallel fortran
Programs, Argonne National Laboratory, TM# 86, Nov. 1986. [FNV 15]

Dongarra, J.J., et al., ''Programming Methodology and Performance Issues for
Advanced Computer Architectures,'' Parallel Computing, 8, pp. 41-58, 1988.
[PROG 33]

Dongarra surveys the techniques of programming computers with advanced
architectures and presents the SCHEDULE programming environment. He emphasizes
that conversion of existing algorithms and invention of new algorithms must be
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supported, and that the compromise of performance without portability has
tempted many architects and programmers of parallel machines. Dongarra gives
two approaches.

The first approach is recasting algorithms in terms of high-level modules
(e.g., the Basic Linear Algebra (BIAS) routines), and coding in high level
modules allowing the user to avoid the tedium and errors of machine-dependent
coding to gain performance.

The second approach is use of a standard interface to exploit the parallel
capabilities of machines with multiple processors through explicit parallel
programming. A large grain control flow form of coding is presented.

Modularization by encapsulation of basic matrix and vector operations into a
set of high level modules provides improved clarity, potability, and ease of
maintenance, making feasible high performance and portability across a large
number of machines. The BLAS are given as an example, now in their 16th year
and third level (Level 2 is vector-matrix and level 3 is matrix-matrix )
Standardization is given as one of the important contributions of BIAS.
LINPACK was originally coded in level 1 BLAS but performance was improved
through level 2 BIAS. The level 3 version now allows multiple vector processor
operations.

Explicit parallel programming of low-level detail has been successful but has
limited portability. Dongarra reports that the tools which require multiple
parallelism and dynamic allocation to be less than adequate. The range of
extensions provided by computer vendors is highly architecturally-dependent.
The available synchronization, automatic loop parallelism and process
initiation with widely varying costs (as much as six orders of magnitude)
point to the immaturity of the industry. SCHEDULE is a package which allows
for portability calls of Fortran parallel programs. Machine dependencies are
hidden within SCHEDULE, possibly requiring difficult mapping, but providing
portable applications code.

Dongarra uses the term execution dependency for assertions made by the user
about the order in which operations are to occur. The execution dependency is
expressed in a control flow graph. Large-grain control flow dependencies must
be understood by the programmer for successful programming. A SCHEDULE program
consists of processes and the control flow graph. SCHEDULE provides a
mechanism for expressing the execution dependencies and the processes, leaving
the user to determine the correctness. In partitioning the problem data, is
separated into local and global. SCHEDULE sup-orts both static and dynamic
graphs.

The SCHEDULE environment includes goals for debugging and performance
monitoring. Some potential errors are avoided because explicit scheduling is
not a part of SCHEDULE. SCHEDULE is used by first developing and debugging a
sequential version on a conventional computer. A triangular matrix solution is
given as an example. SCHEDULE is now implemented on multivector processors and
implementation on hypercube machines is contemplated. The NCUBE implementation
uses one master node to control the dependency graph operations.
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5.6.2 Data Flow Proyramming

Preiss, B.R., and Hamacher, V.C., ''Semi-static Dat flow,'' Proc. 1988 Int.
Conf. on Parallel Processing, Penn State University Press, Vol. IllAug 88,
pp.127-134. [PROG 42]

Preiss describes a data flow programming method which allows both static and
dynamic execution. Method used is dynamic data flow graph splicing: creating
new contexts and moving data tokens between processes. Activity templates are
used to represent static dataflow programs. Dynamic data flow requires
multiply-linked activity templates. Program graphs are not re-entrant for the
static case, but the dynamic case allows reentry and loop unraveling. A
context is a small to medium grain process which evaluates an activity graph.
This concept is extended in dynamic dataflow to include conditional statements
which modify the context. Communication channels are used for transfer af data
into and out of the context. The Preiss approach dynamically splices the data
flow graph in four phases to allow for function invocation. The four phases
are: context generation, parameter passing, concurrent execution, and result
passing Preiss demonstrates sequential iteration using the method. Programs
(written in occam) were used to measure performance parameters for matrix
multiplication, fast Fourier transform, Cholesky decomposition, and :ongruence
transformations.

5.7 Human Computer Interface

5.7.1 Algorithm Animation

Brown, M.H., ''Exploring Algorithms Using Balsa II,'' Computer, May 1988.
pp.l4-36. [HCI 71

Graphical representation of programs as they are running (or were run) provide
useful insight into the algorithm. A more complete understanding of the algorithm
is possible. Brown presents an extensive collection of algorithm animations which
allow the program to be controlled during simulation as well as changing the way
information on the running process is presented to the developer. In Balsa-Il,
the user watches through several viewing modes. The view location, size, zoom
level, pan direction, and point of observation can be adjusted as the algorithm
proceeds. A scripting facility which records the user's actions is also
available. Balsa-Il is a programmer's tool with facilities for controlling
execution, managing display, and scripting.

There are three phases in using Balsa-II:

(1) splitting the program into the components of algorithm, input
generators, and views which present the animation,

(2) implementing each component (e.g., annotating the algorithm to mark
an interesting event), and

(3) setting up the Balsa-l1 by identifying the views and input
generators to be 'ised by textural names.
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Significant programming skill and knowledge may be required to instrument an
algorithm so this is a programmer's tool which provides a user's view.

During operation, pull-down menus provide user control. Views such as sticks
provide a bar graph of parameters vs. time or dots which spatially illustrate
the operational distribution. The partition tree view provides an execution
graph. The H-bars show convergence. A history function compares the same view
at different points in time. An adjacency matrix view provides the data
distribution over matrix values. Dialog boxes provide textural information on
the runs.

Programming to use Balsa-Il involves inserting event markers and defining the
parameters which control how the event is to be animated. Controls for both
the algorithm and the input generator are defined; event and selection routing
are also set up. Balsa-II uses adapters to transform the views to be
presented.

Payoffs of visualization are significant. Balsa-Il is now a sequential system
tool, but it presents a good model for parallel algorithm analysis.

5.7.2 Pictorial MaDoine

Hsia, Y. and Ambler, A.L., ''Programming through Pictoxial Transformations,''
Proc. 1988 Int. Conf. on Parallel Processing, Vol. III, Penn State University
Press, pp. 10 -16 , Aug. 1988. [HCI 8]

This paper describes using visual representation of data structure and
manipulating the data structure to develop program algorithms. Pictorial
Transformation (PT) is a combination of graphical programming and processing
visualization. The user develops both a picture and a film (sequence of
pictures). The process of building these is captured and recorded as films.
Control is exercised through a selection path and a selection condition set.
The initial situation must be defined and is changed using predicates during
the film process.

5.8 Environments

5.8.1 Multi-Computer Programming Environment

Reeves, A.P., ''Programming Environments for Highly Parallel Multi-Computer,''
The Third Conference on Hypercube Concurrent Computers & Applications - Vol.
I, California Institute of Technology, Jan. 1988 pp. 458-467. [ENV 3]

Reeves analyzes the difficulty in developing a programming environment due to
the wide range of different programming paradigms, even on the same
architecture. The requirements are for environments which provide for fault
tolerance, dynamic load balancing, dynamic algorithm selection, and automatic
task decomposition and allocation.

3

3Others point to the need to combine small grain into large grain for
multiprocessor use.
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Parallel Pascal on the Massively Parallel Processor (MPP) is the high level
programming language that is the basis for the programming environment
described in this article. It includes parallel expressions and array
allocation across processors. There are three additional classes of
operations: data reduction, data permutation, and data broadcast. Reeves
mentions the Gibbs framework for scientific programming in which each idea is
captured in a single module, called a chapter. The first chapter gives the
algorithm, the second the grid structure, the third the numerical method, etc.
For parallel programming, primitives are more efficient than compiled
operations, and each architecture type has different synchronization support.
Primitives are (1) shared memory machines using semaphores, forks and joins,
(2) message passing machines using send, and receive, and (3) vector machines
using loops. These primitives are closely related to the machine architectures
to obtain maximum efficiency. The combination of parallel scientific
programming for SIMD machines requires permuta-ion and data mapping
primitives, using complex index expressions to replace program loops. The data
structures must also be mapped to the size of the processor array.

Reeves classifies problems as trivial, SIMD, and complex. Trivial class
problems have a high degree of parallelism with no requirement for
communication. SIMD are those for which efficient solutions are known. The
complex class consists of problems which have irregular interactions between
processing units, requiring load balancing and scheduling.

The SIMD programming environment includes support for the following:

Parallel expressions - array data types
Parallel data declaration - to specify the memory in which the array
should reside
Permutation function - shift, rotate, and transpose
Reduction functions - maximum, minimum, sum and product, plus boolean
functions any and all

Distribution functions - implicit distribution of scalars to arrays
(expand)
Sub-array Selection - select row or column
Conditional Execution - ''where-do-otherwise''

Reeves reports implementation on multicomputers as well as the MPP, and
discusses additional extensions for vector indexing, concurrent partitioned
program paths, global data permutations, local data permutations, and sparse
matrix handling.

5.8.2 Parallel Proarammine Tool Reauirements

Bremmerl, T., ''An Integrated and Portable Tool Environment for Parallel
Computers,'' Proceedings of the 1988 International Conference on Parallel
Processing: Algorithms and Applications, Vol. III, Pennsylvania State
University Press, Aug 15-19, 1988, pp.50-53. [SUP18]

The tool environment Multiprocessor Monitoring System (MMS) provides
debugging, performance analysis, and visualization of program execution. It is
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portable and expandable to various architectures and supports several
abstraction levels. A hierarchical layered model for tool environments is
presented in the paper.

Bremmerl remarks that almost all parallel processors have a host/target
environment which is well supported with programming languages, compilers, and
linkers on the conventional host. The missing components are debuggers and
performance measuring tools. Those which are available are not integrated into
the programming environment, which forces monitoring to be a very low level of
abstraction. Those tools typically focus on instrumentation techniques and
synchronization concepts. The programming interest provides source code
instrumentation, operating system instrumentation, and runtime instrumentation
forcing a batch mode of operation and self-effects of the instrumentation on
the running problem. Also the tools are machine or at best architecture class
dependent.

Requirements for a tool are

(1) Window based concurrent debugger
Display and modify states of programs running on multiprocessor
Specification of complex predicates about dynamic execution
Control of breakpoints and tracing

(2) Performance analyzer for optimizing concurrent programs
Provide information on efficiency of communications between
processes activation of processes

Access to variables
Access to operating system
Recording or scripting these
Help identify bottlenecks

(3) Visualization of processes and operations
Graphical view of execution
Flow of communication
Display complex data types
View of control and data flow

The tool must be interactive and controlled by the user. Monitoring must be at
all levels: hardware, operating system, object code, and hybrid. The
abstraction level must vary from language to assembly. Portability to other
architectures is necessary.

The design is layered, much like a communications system. For example,
monitors might evaluate predicates about control flow, data flow, concurrency
object (tasks, mailboxes, semaphores) and combinations of these. This monitor
can be applied a the hardware, software or a combination.

The initial target for the tool set is the Intel iPSC, but the host is the VAX
under Ultrix.
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5.8.3 Partitioning for Matrix Multiplication

Whelan, M., Gao, G.R., Yum, T.K., ''Optimal Decomposition of Matrix
Multiplication on Multiprocessor Architectures,'' Proceedings of the 1988
International Conference on Parallel Processing: Algorithms and Applications,
Vol. III, Pennsylvania State University Press, Aug 15-19, 1988, pp.1 81 -1 85 .
(SUP 211

Whelan addresses the appropriate grain size for parallel tasks and the
allocation to optimize a parallel system. A decomposition method is used for
matrix multiplication since it is a typical benchmark in parallel systems. The
regular iterative nature of matrices is used to decompose the matrix operation
into tasks. An analytical model of cost of computation and communication
results. An architectural model is used for multiprocessors which includes
times to transfer data elements, fetching code, cache organization, and cache
size. A simple model of decomposition relates computational and communication
requirements to the number of K1Wi matrices used in the decomposition as shown
in the table below:

TABLE OF DECOMPOSITION MODELS

Processor Compute Time Communicate Time

1. Uniprocessor M 3 T* 2M2 T1

2. M Processors(l per column) M2 T* (I+M) M2 T,

3 M2 Processors M T* 2 M 3 T1

Where t* is a compute time and T1 is a communication time for the
multiprocessor.

In decomposition, submatricies are used and the mG~els applied to determine
efficiency. The optimum partitioning for a given processor can be found by
varying the regions of the partition. Whelan describes methods of
communications overlap effects and optimizing to the partition sizes. A curve
is shown which allows communications computing tradeoffs to be made.

5.8.4 Replay for Debugein£

Miller, B.P., Choi, J., ''A Mechanism for Efficient Debugging of Parallel
Programs,'' Proc. SIGPLAN '88 Conference on Programming Language Design and
Implementation, Atlanta, June 22-24, 1988, pp.135-144. [SUP 22]

Miller and Choi describe the speculative replay approach, which approach
allows the reconstruction of the behavior of a program from histories of its
individual processes. Known time dependencies between events in different
processes are used to break the processes into dependency blocks. A
concurrency map history is constructed. Known dependencies are preserved and
compared to the replay. If a mismatch occurs then the process backs up and an
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alternative ordering is used to create a match. Additional dependencies allow

added levels of detail. A shared queue example is presented.

5.9 Language Extensions

5.9.1 Combined Object Oriented and Concurrent Language

Gehari, N.H., and Roome, W.,D., ''Concurrent C++: Concurrent Programming with
Class(es),'' Software Pract. and Exp., 18(12), pp.1157-77,Dec 1988. [EXT LANG
1]

Two upward compatible supersets of C are described - Concurrent C and C++ -
which provide data abstraction and parallel programming facilities. Concurrent
C++ is an integrated language combining the two. Integration issues are given
in the paper.

C++ provides the class for data abstraction, with specification and body
components. All information needed by user for use and by the compiler to
allocate class objects is included in the specification. The body contains
functions declared in the class specification. There are private and public
components of a class: private class components are data items and functions
which implement class objects which are not accessible by the user; public
class components are data items, constructors, destructors, member functions
or operators, and friend functions. The public components make up the user
interface.

Concurrent C consists of processes, which are a set of components that execute
in parallel. Facilities are provided for declaring and creating processes,
process synchronization and interaction, process termination and abortion,
priority specification and waiting for multiple events. Transactions are used
for process interaction, and are classified as services called by other
processes. Synchronous transactions block and asynchronous transactions are
non-blocking.

The two supersets of C are orthogonal, the benefits of object oriented C++ can
be gained for Concurrent C when the two are integrated. Classes can be used to
ensure that the protocol for interacting with a process is properly observed
and that implementation details are hidden form the user. Gehani gives an
example of a disk driver where the multiple use of the driver is hidden from
the user and the multiple disks in the system are supported without inputting
multiple versions of the driver. In a second example, the Concurrent C window
manager provides multiple virtual terminals. Concurrent C++ is used to
increase the robustness of the window function by the addition of classes.

The two languages are separate preprocessors for C. A complile time option selects
whether or not Concurrent C or Concurrent C++ are used. Ther merger of the two
languages should make it possible to use data abstraction along with concurrent
programming facilities. A goal is to have the same flavor or representation to
the user.

In the merged version the following data abstractions extend the concurrent
environment:
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Class variables can be used in process bodies
Class types can be used for transaction and process argument types
and as transaction return-value types

Reference types can be used for transaction and process argument
types (in shared memory implementations)

Class names can be used as a type with a class keyword and process
names can be used as a type

Classes and processes are both abstraction facilities. Processes can be used
to implement some of the same objects as classes, albeit with reduced
efficiency. Classes are more efficient when concurrency is not required
because of a smaller overhead.

5.9.2 Mathematical Language

Grossman, F., Klerer, R.J., and Klerer, M., ''A Language for High-Level
Programming of Mathematical Applications,'' Proceedings: 1988 Intl. Conference
on Computer Languages,
Miami IEEE Computer Society, Oct 9-13, 1988, pp.31-40. [EXT LANG 6]

The AUTOMATED PROGRAMMER is intended to reduce the effort in programming
scientific and engineering applications. The notation is modeled after
textbook mathematical representation. Self-documentation is used to aid in
reducing error. English Greek, and two cases of math are provided. Matrix
arithmetic is accomplished by using standard textbook notation.

Instead of Fortran calls to functions, this language provides a facility for
using mathematical notation to express problems and compile them for solution.
A full s(Leen editor is used and frequent symbols for integration, summation,
product series, square root, etc. are provided by function keys. Variable may
by named or represented by Greek symbols. A syntax is supported for English-
like statement for control of program flow and for reads, writes, printing,
etc. Superscript operations on matrices are supported (superscript t for
transpose, superscript -1 for inverse, superscript n to multiply a matrix by
itself n times, etc.

The automated programmer works through translation into Fortran and creation
of program modules from libraries. The DOS operating system is used on the PC
or PS/2 environment.

5.9.3 Parallel Symbolic Lisp

Halstead, R.H., "Parallel Symbolic Computing,'' Computer, August 1986, pp.35-
43. [EXT LANG 10]

Halstead gives a review of parallel symbolic programming. The spectrum of
programs has numeric programs at one end and symbolic at the other. The
differences suggest different approaches to parallel processing.

11-48



Numeric Programs are characterized by

Function is to deliver numbers to an ALU to calculate a result.
Generally has a data independent flow of control, arithmetic is
emphasized.
Same sequence of operations are performed no matter what the values
of the operands are.

Matrices and vectors are common data structures.
Programming tools include automatically parallelizing compilers and
languages featuring explicit parallelism following a communicating
sequential process model.

Symbolic programs are characterized by

Programs emphasize the rearrangement of data. (To the degree that
when data is changed it is called a ''side effect.'')

Principle function of a symbolic program is the reorganization of a
set of data so that the relevant information in it is more useful or
easier to extract.

Sequence of operations is often data dependent.
No simple operation style (abstraction constraint) such as found in
numeric programs.

Applications include sorting, compiling, database, symbolic algebra,
expert systems, and AI.

Concurrency is found in recursion on composite data structures such
as trees, lists, and sets.

The concurrent language developed by Halstead is Multilisp. Multiisp is a
version of Scheme (a public domain Lisp system) having extensions which allow
the programmer to express concurrent execution. Scheme differs form other Lisp
systems because it has lexical scoping to promote modularity and a privileged
class of procedures which may be passed as arguments, returned as values,
stored in data structures, and treated as other kinds of values. Multilisp
includes side-effect primitives for changing values and altering the data
structure, this feature requires additional control to ensure deterministic
execution. However, the default is sequential execution. The (future X)
construct is used to invoke concurrent operation. With future command a future
is returned as a place holder for the value of X and a task is created to
concurrently evaluate X. When the value is ready the value of X replaces the
future at X. Any task needing the future's value is suspended until the future
is resolved. Lazy evaluation, where expressions are not computed until they
are requested, is accomplished by a delay primitive. The future construct
creates a data flow architecture-like style. Much of the value of future is in
the ease of gluing of programs together for concurrent execution.

5.10 Operating Systems Extensions
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5.10.1 Memory Management on Massivelv Parallel Architectures

Chen, M.C. and Jacquemin, M., ''Footprints of Dependency: Towards Dynamic
Memory Management for Massively Parallel Structures,'' Proceedings: Third
International Conference on Supercomputing - Supercomputing'88, Vol. III,
Editor: Kartashev, pp.486-494. [EXT OS 1]

This paper explores the techniques for increasing performance on the
Connection Machine by recording data dependencies during execution and
dynamically sorting portions of the data elements according to dependencies.
Dependencies may cause load unbalance, cache inefficiencies, page misses,
extra communication, or other execute efficiencies. Chen believes that the
amount of dependencies is an inverse measure of the parallelism of the
algorithm. Both code and data must be distributed among processors. (For SIMD
machines the same code is distributed to all.)

Chen attempts a dynamic data allocation method for static data dependency
graphs. Key to the method is the recognition that dependencies act to spread
data out in time across the computer, so one solution would be to assign data
according to the time epoch in which they are needed.

The author classifies parallel problems based on dependency and regularity
(systolic).

Problems which are easily addressed in parallel fall into three classes:

Few to no dependencies and highly regular (called embarrassingly
parallel or trivial by some)

Significant local dependencies but with a high regularity
Few dependencies but irregular with little or no structure

Two other classes are more difficult:

Sini-qrnt '4 Dendencies but no known structure
Significant dependencies with a dynamic structure

Chen's method applies to the first of these. In these cases, optimization of
cache and secondary storage systems used by the parallel processor is needed.
Anti-dependent (non-assigned) data are distributed by association with the
processor. Chen uses dynamic (on-the-fly) sorting to keep the system finely
tuned and upgraded to maintain optimal operation, which is feasible because
sorting is very efficient on the Connection Machine. Significant speedup gains
are reported for example problems.

5.10.2 Parallel Ada?

Mundie, D.A. and Fisher, D.A., "Parallel Processing in Ada,'' Computer,
August 1986, pp.20 -25. [LANG 11]

Mundie presents an overview of Ada's microtasking model. Ada provides high-
level mechanisms for task creation and synchronization which are machine
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independent and operating system independent. (Model is defined as the
relation between the program structure and the multiple virtual processors on
which the model will be implemented.) The tasking model for Ada is based upon
macro-tasking by process-level models. Synchronization of tasks is the
fundamental issue in concurrent programming of this type, it is required both
as a mechanism for mutual exclusion, preventing multiple processes from
accessing the same computer resource simultaneously and for data exchange,
preventing transmission prior to receiving process being ready. Ada avoids
difficulty and complexity of programming and maintaining semaphores and
signals, provides structured primitives for task synchronization and multiway
waiting, and also allows for a compromise between shared and message-passing
memory-based machines. The compromise works because synchronization is
implicit and can be implemented efficiently on both types of processors.

Shared xemory, the most effective method, is difficult to extend to widely-
dispersed, loosely-coupled systems. Message-based systems have adequate local
memory for wide dispersal, but the performance penalty is substantial when
compared to shared memory. In Ada the implicit synchronization allows multiple
access with restrictions that allow for loosely coupled systems. Updating is
guaranteed only at synchronization points, allowing the shared variable to
exist in several memories, with copies being passed back and forth only during
rendezvous.

The usefulness of Ada as a tool in parallel programming is limited principally
because restrictions in tasking make parallel programming unnecessarily
difficult. These restrictions are

Calling tasks must name the task whose entries they are calling
Entries must be declared in the task that accepts them, and
The select statement, used to perform multiple simultaneous
rendezvous, does not allow mixed or multiple calls

5.10.3 Distributed Cgmputina

AhuJa, S., Carriero, N., and Gelernter, D., ''Linda and Friends,'' Computer,
August 1986, pp.26-34. [LANG] 22

Ahuja describes the language Linda. In parallel programming the programmer is
concerned with many points and their relationships in computational time-
space. The Linda language attempts to make the parallel programming process
easier by eliminating much of the programmer's concern about coupling between
processes. Actions are taken through replication in addition to the normal
partitioning found in other concurrent languages.

The Goals of Linda are to meet the needs of programmers. These are

(1) A machine-independent and portable programming vehicle

A high level programming model without idiosyncratic system
calls to support a particular variant of message-passing,
memory sharing or SIMD computer
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Must run on a range of architectures from one language
Must be able to communicate about parallel algorithms allowing
growth of knowledge of methods

Tools must be suited to user needs not the architecture's

(2) A programming tool that eliminates dealing with spatial and temporal
relationships among parallel processes:

No coupling require for knowledge of other processes existence
No response is necessary before the sending process proceeds
with its actions.

(3) A programming tool that allows tasks to be dynamically distributed
at runtime:

More available concurrent tasks than the processors can use
Providing the even distribution needed for good speedup. A
dynamic scheduling is needed because static mapping may be
impossible.

(4) A programming tool that can be implemented efficiently on existing
hardware:

The language must run on the appropriate class of computers.
Run-time systems and ooerating systems that defeat the
strengths of the language must be present.

Linda uses a distributed data structure, called the tuple, to achieve much of
its power. Actions are read, add, and remove and a logical name is used.
Revising tuples requires removal, revision and reinsertion. This ensures that
many processes can share access. Tuples are coarse-grained and access to them
can be efficient on loosely coupled architectures.

In Linda the program is replicated as many times as there are processors and
all processors attempt to work over a distributed data structure (tuple
space). The worker programs ignore each other in this process. The advantages
which accrue are

Transparent scaling
Elimination of context switching
Dynamic load balancing

Mixed partitioning is used when programs cannot be cast into a pure replicated
form.
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Section 6. A Parallel Programming Environment for Parallel Signal

Processing

6.1 Tool Environment

Figure 6-1 gives an overview of a ''total environment'' as defined from the
literature survey.
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6.2 Parallel Programming Tools

6.2.1 Visualization

Visualization tools allow the user to observe the concurrency in the language
and machine level code. Visualization is necessary to debug parallel
algorithms and code, allowing observation of sequential bottlenecks and
overloaded processors and network links. Adjustment of the algorithm and the

11-53



code is provided immediate feedback to the operation. G. Fox [Fox 3] describes
the methodology used by a graduate student, who developed a very fast-sort!ng
algorithm. The student used visualization followed by continuous iteration of
observation and rework.

Architecture simulators and instrumented architectures are needed to provide
visual feedback to the programmer on the operation of the machine on the
concurrent code. To identify bottlenecks such instrumentation should provide
the lengths of all queues in the system.

Work in animation of sequential programming techniques should be transferred
to concurrent software engineering tools. One example is the work of Brown
[HCI 7] in his Balsa II environment. By annotating and splitting code into
components (algorithm, input generators, and views to present animated
pictures), the Balsa II systems provide algorithm animation displays. These
displays are used to track dynamic and abstract processes, providing
visualization needed to refine and debug algorithms. Similar tools are
especially necessary for parallel programming, debugging, and advancing
algorithm development.

6.2.2 Tools for Heterogenous Maopine

Network research on distributed systems has led to development of several
operating system approaches: Mach, CRONUS, and ISIS are distributed operating
systems. Ada, Linda, and ANSpec are languages which support parallel
distributed programming (with the support of an underlying parallel real time
support system). Tools such as automatic microtasking (spreading of processes
across several identical MIMD machines) and automatic vector identification
and processing are the most advanced at this time. Such tools work best with
hardware assistance. For example, the Cray Y-MP has added memory functional
support which allows a new microtasking compiler to more easily spread its
work across the eight processors.

6.2.3 Applications Probing and Design Allocation Tools

The importance of understanding the application cannot be overemphasized.
Tools which allow the user analyze code for the concurrency expressed in it
would be very valuable. A concurrent code analysis tool acts upon high level
specification or source code or on the output of a parallelization precompiler
and produces directed graphs, much as that done by the front end of a standard
language compiler. Analysis engines for different ideal modes of parallelism
are used to pass over these graphs and produce a histogram result which
identifies the levels of concurrency of different parallel types expressed in
the complied code. Such a tool of this nature would allow the user to identify
the requirement for parallel types, allow the recoling of sequential elements
and tuning of performance, provide estimates of performance on real
implementations of the ideal architectures. In fact such a tool is necessary
if the result is to be flexible and programmable. In addition, the tool is
needed for the allocation of functions and algorithms to parallel processing
modes and supporting architectures. Sequential bottlenecks in many parallel
architectures can be identified by this tool. The characteristic performance
evaluation process allows each architecture to be used in its best mode.
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6.2.4 Modeline and Performance Tunine Tools

The output of the concurrent code analyzer and the allocation to processors is
a design with each function spread into parallel processes characterized by a
uniform processing mode. These processing modes are used to match those
available on the parallel system. The system building process now requires
that these processes be tied with the proper synchronization and data
transfers to perform the upplication. The high-level tool necessary for this
binding is a modeling tool which simulates each mode in the architecture. The
user can define performance parameters by rule insertion. The application
system is described by the object-oriented connection of icons representing
the computing architectures and networks. The tool models system resources and
processes, computes performance parameters, and is capable of monitoring the
actual distributed system.

6.2.5 Comparison of Model and Application Recuirements

The code application analyzer produces numerics on the degree to which the
required processes fit the architecture in the system performance levels
either from the ideal architecture (computing mode) or from actual
architectures (distributed system). A graph of operations is generated by
automatically generating a PERT program. A coarse model is used for each =ode
of processing allowing coarse-level tuning. The process follows that used in
VLSI circuit engineering. The processors in the system are considered parts,
as though they were from the parts catalog. Models of their operations are
used in the initial simulation until the design stabilizes. Then more refined
models are used and more detail added to the processing definitions.

6.2.6 Parallel Machine Codine Tools

After a candidate overall system design is reached, detailed coding for the
actual machines can be performed. This code is fed back into the concurrent
code analysis tool and allocations and process sequence graphs reverified for
function and performance. This system engineering approach allows new
architectures to be evaluated and also allows measurement and evaluation of
the impact of changes in requirements. In addition, incremental and phased
development of systems using mixtures of codes represented by high level
models of their future implementation and new parallel codes. Care should be
taken to provide a hierarchy with machine independent, architecture type, and
machine-specific layers.

These tools are very similar in approach and levels of complexity to those
used in VLSI circuit design computer-aided engineering. The difference of a
more complex input is offset by adding the concurrent code analyzer tool. Note
the assumption that the outcome of the system design results in the proper
code, control, and data granularity for operation within the constraints of
the network and its controlling operating system or language.

The detailed coding of each process in the application should be allowed in
different languages. The best concurrent expression of a process is in a
concurrent language without artificial constraints caused by sequential
languages and the use of extensions. Because there is no standard concurrent
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language programming which is common to each architecture and its specialized
mode of operation, the user must be able to use available languages on the
machines in his repertoire. The network design must provide interfaces to
languages already developed for the processor. Examples of these languages
are

C * and *Lisp (Connection Machine)
Fortran (BB & N Butterfly)
Signal processing macros (Warp)
Occam (Transputer based parallel processors)
Ada (Alliant)
Pacific Sierra preprocessors for Fortran (Cray)

6.3 Algorithm Development

Algorithm development and tuning are among the crucial elements of parallel
application development. The largest gains are to be found in the discovery of
new algorithms which express concurrency. Hardware and software development
follow thereafter. The gains provided by the struggle to program parallel
machines will be overshadowed by insightful algorithms which provide a
concurrent view of the application. However, one cannot rely upon timely
progress and the state of mind necessary for development cannot be attained,
without attempting to perform the parallel application. Abstraction,
portability, fault tolerance, recovery, tools for visualization of code
processes, and configuration management are needed.

The need for abstractic- is noted as a desirable feature, b'it the need to
understand the architecture when programming remains a necessity, The goal is
to at least isolate the system developers and signal processing users frcm the
details of the parallel architecture, leaving machine specific coding to a
team of specialists. Tools for debugging, run profiling, instrumentatio
display in three-dimensional graphics, and retracing operations in iixed
sequence are needed. Results must be deterministic in the debugging mode with
software and hardware paths made repeatable.

The hardware design should include the concept of instrumented architectures
to display profiling and debugging results, including all queues, functional
unit utilitization, switch utilitization, memory accesses and patterns,
feedback of concurrency destroying processes, and serial bottlenecks.
Instrumented architectures meeting these criteria must be provided with no
overhead to the parallel process under computation. A hardware design similar
to the serial diagnostics chain provided by some systems could be easily
implemented to independently (orthogonally) present machine performance
information on a monitor window.

6.4 Requirements for Parallel Processing Tool Environment

6.4.1 Ideal Parallel Programmin2 Environment

The user must be able to express the problem in terms of natural independent
processes (unrelated to processors!) which best represent the concurrency
available. Advocates of the conventional processor strategy are hopeful that
combining, chunking, or gluing compilers will be forthcoming, because these
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can automatically convert natural level concurrency into coarse grain

processor code (See (Fox]).

'' The major issue is that of partitioning a problem into many processes that
can be executed in parallel on an MIMD computer. For a small number of
processors, say two to four processors, this problem is not a significant one
because the parallelism available is nor significant. For several processors,
say s.Lxteen or thirty-two, the problem is extremely difficult. Programs
without a specific iterative structure are seldom so compl x that they have
sixteen to thirty-two distinct sub-processes. Programs with an iterative
structure are likely to be better suited to SIMD computers and execute with
somewhat lower efficiency on MIMD computers because of resource allocation and
synchronization overhead. (From [Stone])''

6.4.2 Data Decomposition

Data decomposition into an even distribution across the computer is used when
the calculation is based on a large static data structure and the amount of
work is about the same for each data element. Even small differences in the
computational load may result in idle waiting of many processors. A small
fraction of this waiting can significantly impact the overall speed up,
Amdahl's law is never beaten, only avoided by careful balancing and scheduling
and by increasing the size of the parallel computation. Data decomposition is
typically applied to highly structured numerical computations.

6.4.3 Control Decomposition

At the other extreme is the decomposition required when data structures are
irregular and control is unpredictable because each portion has widely varying
run times. Control decomposition can be any of the following types:

Manager-worker
Large grain pipelines
distributed blackboards
Functional

In the manager-worker control, a manager node is programmed to maintain a
global data structure, monitor and track subprograms, and assign tasks to
workers. Worker nodes request work when finished performing their indicated
tasks.

Large grain pipelines are organized around stages which receive data from the
previous stage in the pipe, operate on the data using a coarse grain code or
systolic array approach, and pass the resulting data to the next stage.

Functional decomposition is the matching of the functions and communication
organization of the algorithm by physical location of processors and
communication lines.

6.4.4 Performance Tuning

The issues of performance tuning are load balance, communication ratio
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(granularity), sequential bottlenecks, and synchronization.

Lodblnce is the degree to which all processors remain active during the
progress of the application.

Communications ratio is the ratio of communication time to computation time
(Code granularity). B~cause the weak link in many parallel machines is the
communication between processors it is important that the overhead of
communication does not cause processors to be idle waiting. The smaller the
ratio the coarser the code granularity and the higher the efficiency and
performance.

Seouential bottlenecks are points in the computation where all processors have
to wait for a single processor (or other part of the system, e.g. the network)
(Control granularity). Any bottleneck dramatically impacts performance in
parallel systems.

Synchronization is required when processes must come together and coordinate
their activities. The use of mega synchronizations per second as a rating is
advocated by [Stone],

(1) Load balance improvement techniques

Decrease and make grain size more uniform
Dynamically redistribute data structures or tasks
Redistribution of static data structures
Increase degree of multiprocessing per node

(2) Communication/computation ratio improvement techniques

Increase grain size
Restructure for fewer but larger messages
Combine multiple logical messages into a bingle message

(3) Sequential bottleneck improvement techniques

Modify or reorder algorithm to overlap sequential code with other
computations
Spread work of overloaded processors among several processors

(4) Synchronization improvement techniques
Send needed values as soon as possible
Reorder or modify algorithm to eliminate synchronization where not
needed

The key to the approach to MIMl mapping is recognizing the conflict between
load balancing, that is, requiring decreased uniform grains, and
communication/computation ratio minimization, that is, requiring fewer and
larger grains and messages. The solution to this dilemma is the gluing
compiler, where grains of the smallest sizes are programmed and compiled to
the intermediate stage. The intermediate compiler structure is in Directed
Acyclic Graphs or DAG form where independent code blocks and their
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relationships are developed and stored. The gluing compiler then forms the
correct sizes for mapping the architecture. At this level of the compiler a
standard parallel computer intermediate form could be defined which would
allow each manufacturer to produce his own back-end. This standard would allow
application and library software vendors the same target. Users would then be
able to write their applications in the most concurrent possible form, then
adapt and compile that code for a series of different parallel machines,
preserving their effort on the science, numerical methods, algorithms, and
specification-level language work. Portability could be achieved in this
manner. The gluing compiler optimizes for a particular machine by aggregating
together the small code blocks into the proper sizes and grains necessary for
good operation on the selected machine.
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Appendix A - Definitions and General References

These basic definitions define most of the terms of parallel supercomputers. These references
were used to develop these definitions: (Stone], [Desrochers], and [Fox].

Actor - A processor which consists of operations, firing rules, and associated objects and
states. (in programming)

Algorithmic overhead - The overhead associated in dividing a problem into parallel parts,
such as the extra calculations performed at each processor which are not necessary in the
sequential algorithm.

Amdahl's Law - The maximum speedup attainable by an algorithm and its implementation on a
computer is dominated by its sequential components. Performance will be dominated by the
amount of work which must be done for the slowest mode of execution in the application. (See
,?!artin] and Martin [ARCH5].

Balance - When processor, memory, interconnection network, synchronization, an I/O bandwidth
are arranged so that no one of them strongly dominates the system throughput.

Barrier synchronization - Halting a set of processes until every process in the associated
set has completed.

Breakeven point - The number of processors required in a multiprocessor to match the
performance of a single processor of the same power.

Chunksize - The number of iterations or operations to be grouped as a single task to increase
task code grain size or granularity.

Coarse-grain parallelism - Parallel execution in which the amount of computation is many
times larger than the overhead and communication expended per task.

Conflict - The condition which exists when two or more operations require the same system
resource, such as functional unit, memory bank, or network port.

Contention - The interference among tasks competing for the same resource resulting in idle
task waiting.

Context switch - The process of saving the state of one task and restoring another task, thus
changing the execution from one task to another.

Critical Section - A section of a program which may be executed by only one process at a

time.

Data flow - The sequence of processes and data transmissions to be performed on a data set.

Deadlock - The state which exists when parallel processing elements wait for events which
never occur.

do par - A program statement that permits iterations of a loop to be executed in parallel.

do seq - A program statement that forces iterations of a loop to be sequential.
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Domain - A set of objects or data which define the scope of a problem. A set of grid points
or a set of bodies are examples of domains. Domains are split into grains, granules and
members.

Domain decomposition - The division of domains into parts, one grain per processor or memory.

Domain of processing - A mode of processing, for example, highly structured numeric
computation.

Efficiency - The speedup per node.

Explicit parallelism - Parallelism that is purposely constructed from sections of a program
and defined in detail.

Fine-grain parallelism - Typically refers to SIMD single-bit control granularity. (See
granularity discussion at end of this Section).

Grain - A subdivision of a domain to be handled by a single node. Code, Control, and Data
£rain -re the different types of grain. (See discussion at the end of this Section).

Grain size - The number or length of fundamental entities or members in a grain.

Granularity

The concept of grain describes program attributes which can be used effectively by each
parallel machine category [Murphy]. The forms of grain are the following:

(1) Code Grain - the size of code segments capable of being run with
communications and synchronization overhead remaining insignificant

(2) Control Grain - the degree, number, and flexibility of instructions which can
be run in a given parallel machine cycle

(3) Data Grain - the relative association of data elements with each other which
can be treated within the parallel machine

Code grain varies through the levels of the following sizes:

Coarse - More than 100 instructions
Large (or Medium) - approximately 100 instructions
Natural - around 10 instructions
Cycle - a single floating point instruction
Fine - 1-bit operations

The most general purpose machine would be able to handle all code grain size equally
effectively. When MIMD machines are being used, the term coarse grain typically refers to
coarse code grain.

Control grain varies from fine (one-bit) for SIMD machines, to Massive (N, the number of
independently-controllable, computational-functional units in a fully synchronized, conflict
free, and latency buffered parallel machine). The most general purpose machine would handle
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all control grains equally well, with ''massive'' being ideal. When SIMD machines are being
discussed the term ''fine grain'' refers to control grain. Note that SIMD machines require
coarse grain typically refers to coarse code grain.

Control grain varies from fine (one-bit) for SIMD machines, to Massive (N, the number of
independently-controllable, computational-functional units in a fully synchronized, conflict
free, and latency buffered parallel machine). The most general purpose machine would handle
all control grains equally well, with ''massive'' being ideal. When SIMD machines are being
discussed the term ''fine grain'' refers to control grain. Note that SIMD machines require
coaunit. Typically the same as the grain.

Hypercube - The method of interconnection that treats individual processors as nodes of a
multidimensional cube.

Implicit parallelism - The parallelism that is embedded in the normal structure of a program

Inhomogeneous Problem - Problems with domains in which members are of different types.

Interprocessor communication - The transmission of data and conLLl information between
multiple processors.

Irregular problem - A problem concerunit. Typically the same as the grain.

Hypercube - The method of interconnection that treats individual processors as nodes of a
multidimensional cube.

Implicit parallelism - The parallelism that is embedded in the normal structure of a program

Inhomogeneous Problem - Problems with domains in which members are of different types.

Interprocessor communication - The transmission of data and control information between
multiple processors.

Irregular problem - A problem concerors and their local memories, with a communications
network providing control and data flow between the computers.

Multigrid method - The solution to partial differential equations in which a coarse grid is
used to obtain an improved solution on a finer grid. Iterations among a hierarchy of coarse
and fine grids can reduce error.

Multiprocessor - A parallel computer which is composed of multiple processors, shared memory,
and facilities for their interaction and cooperation.

Nearest-neighbor interconnection - An interconnection structure that connects each processor
to its nearest four neighbors in a rectangular grid.

Node - The elements of a parallel processor (processor and/or memory, and switch) located
at the vertices of the interconnection system.
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Overhead - Total overhead is the performance difference between linear speedup and that
achieved by N processors. Overhead is due to algorithmic, software, load balancing,
communication, scheduling, and context switching.

Recurrence relation - The relation in which items in a sequence are expressed in term of
previous items in the sequence.

Scalar - An operation which manipulates individual data elements, completing each operation
before starting any part of another.

Serial time - The time taken to execute an algorithm on a serial (single processor) computer.

Shared memory - A common memory in a multiprocessor which allows each processor to access
memory locations of any other processors, typically through a memory access (using an
interconnection network) to communicate between processes.

Small (Fine) grain size - Processors with memories around 1000 bytes per processing node,
typically SIMD 1-bit operation; another definition is decomposition into small groupings.

Speedup - The ratio of time required to execute an efficient serial algorithm to the time
required to execute a parallel version of the algorithm on a number of processors identical
to the single processor. Often plotted as a function of the number of processors.

Synchronization - An operation in which two or more processes exchange information to
coordinate their activities.

Utilitization - The fraction of a system's total resources that is being used.

Virtual concurrent processing - The support of more nodes in the problem set up than in the
computer hardware.

General References

:Fox] Fox, G.C., et al., Solving Problems on Concurrent Processors, Volume I, General
Techniques and Regular Problems,'' Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[Stonel Stone, H.S., High-Performance Computer-Architecture, Addison-Wesley, 1987.
Pg. 383

[Martin] J.L. Martin, ''Mapping Applications to Architectures,'' Conference Proceedings:
Supercomputing '87, Volume I Industrial Systems, Prototype Architectures, and Supercomputer
Projects, 1987, pg. 475. Editors, L.P Kartashev and S.I. Kartashev, International
Supercomputing Institute, St. Petersberg, Fla. 1j87.

[Desrochers] Desrochers, G.R., Principles of Parallel and Multiprocessing, Intertext

Publications, McGraw-Hill Book Co., New York, 1987.
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[Murphy] Murphy C.G. , Specialized Parallel Processor, Research Consortium, Inc. , Minneapolis,
IN, 1989.
-and-
Mapping Applications to Architectures, Research Consortium, Inc., Minneapolis, MN, 1989.

LKumar) ' M. Measuring Parallelism in Computation-Intensive Scientific/Engineering
Applications,'' IEEE Trans. on Computers, 37(9), pp. 1088-98, Sep 88 (This is [SUP 20:.)

A-5



APPENDIX B

SURVEY REFERENCES



* 0,

I' I
* * 6

40* S -, 0do

40 - 0o 64,

CS S - o, Lf Le -

0 - -

-p -j 4x-~

4w,

~~b s ; .

p-1~-



3.C

F&

21 a
CZ

- 0*

- - .~- ~ f

L' L
It'a

v u 0.

go66 -4-L 9 -V S. &0 w a &0N

- -

-~ - - N B-2



p..8

'36

Z L

aa 27

a, L-

sp I -

a % c

W, d, & ea 03 l 0"W 4

V, w-

-B-3



10

Sir

* LL

II

IO 604

IAa u aI

L IL uc a V

be Ia
- -a- - C L~ 04

.- ~2 2*1. ~ ~
a -* L ar*

- - - 4



IL I

a.

41

I IL
40,

it a

c UA

60 6=

0. 4-6

1, -0 ,e I we, -a &I4 WL 4A 49-0.

'0 -1

- 6A 'MC 4



ILI

Its 4-

v V 41 414

G, 46a 44 4

20 4- - 34, I

-L a

0' c- 3- -a

u~~ 60 Ij a £ m-

4,K~ ~ R a **4, Ow
4-IUE,-C

* 4,, 4,, * ,4, 0. Mm

09 = ,L 5 4,

~ 4.' B-6



K 00 -

-0 w~ to

40*

.F~ - - - - ;
Lp af

TOU

.9 9 -W I

WK UM, M K

- B-7



PI

4- 21

0 'iL ' - " 4 1 0 0

1 Go 4.L 0
CL a- Ia- 66 a OA

6 -e = a -t -

at lea QO Go 9

to a
i~a cI fin. -

"C -*!: fj'

* ~~~- - -- - 0

Il in ~ ~ - ~

w Ag

* ~ * *a *CB-8



00

I A
41 1

-j -

41 Li p-A.

./~~~* c* 4A- ~ '

-0 Z'0 61

LJIL
* i.

AV -a a4

* *~ B 9



S0

o.x N .4 T, Z W, MN a

i t u

tj L. V. -

ap it,- a - 6

C. Z 0 a a

9 a wa

B-10



z

66

00

U, IO =4

VI f- EI
W. I w .111Z 3I~ " I~ I *

at d0 Z Z .p.

* -~ - * .B-11



41 IL

bg 0 0

mi 3;L

U' U. - - ~ F -
0-j

- y U.' ry .'C - .

B-12



I

I

6 oc 0 IL

L -L-

l S . cw 9 a
i & I : Z

ogi41L - 4w 4

*~1 1,. . ~
t rm -t

'* .;- ~ ~ 4-

U.. 4-

* 4 -. I '4

* C ~ -

B 0 at P. z
ar IL &w. ~B - 0B

* 4B B - -I

- B13~



u. -c -- -

-C 40 u. go,0 0

14p, 4 0 . 4 4

- I 4 3 l6 16, lu 6 616

-1 1 k,1 4
I- - , 6. t I. , 6. -.6 6.6 46.

k It V

w *p 0) a, a, 4 16. 1,3 W.~ tj 4 1 a

6..6b62 ~

I 36.6 c 1 E C~~4

'661 40616

IO 4 w - w.6 a-. w

w IL AL 4L 06 9L 6 V 4 IL

B-144 ' -



0;

00

IL

a r

oC 5

-0 p0

60 a 4L I04 4

a.ma

21 W a. w

* * -BU15



F0

X 0 , 0
ZI

r:T

a AO at

L 
-0 -

C. z i -.9

a L- a z -

1 2 s ~ 8 &- SO,-3.

~B-1



10, Or*
44

0 >

*~~ 0~~

0 1-6 U'

IL IL a. 16 IL

* 0.* - 0 ~ B-7 . *



4 -

I..
Ldi."

'0 # - N ~ 4.V~t0
7- C, 4 .4,

4 4 0 4 0- u 0 a.

a 0.

6 vp to

*4U & Uz 4w U ALUI L X

-ma £

*a U y
bf 4, !C U 0

*~~ *; of , ,
49 5 0 w OU)- IL *

* 49- ; ~ - . 4,,, C

B-18~-



00

C

aa

IOE
40

40 40

IOI

IL IL

46 - t o Q

a. - S N 5 B.019



Lii

IU

PM ~~WN
- z ~a' P M

46- 
Li 68

o- I, -
Ina - a' - 4L

* -L

'CL .U' -O F ,.:
a. a61

U.' &l C . U.'

co 00 '1 w

- ~-5
-a0 Aa I" 4L a I .I a.WMLc

In 
pm.aa~. 

~ aa
* * a .- a . ~ 0 &. a . ~ ~ ' a . ~ - ~ L I

- vi-k 
!~~ai -

8'

a' a- *.~ . aB-02 ';~



Ac a 0

w~ ~ ~ or La'IP-AL

~~-0

o I

J. -F 0 4 4

c AL

~~ !'

- 46s 4, 

N ~ ~ ~ ~ o c~-

~i oc.~ .



- a4

106
G6

II
K 03w

- l 
-

- -' S C
IL & Z~ a

B-22



CO

to

u'

*41

Lp r

%5 .a =

L-

w. %aa .

1>.~ 
U~ . -

a AL 4** 
a -L

on," 

~ -- 
- - a I

a. Iwo~

C. . B -23



U
4

C

I

'I

.! *~c~ ~'C~
-. 4,

.3
0 -

&

I *~ ;
.fr 0~.a ~ -~; .i~ *~ - w

- 0~ -S. w- =
4LI 4,4

$ S~ w -. -
- . ± .

2. ~ k
* ~ N

p.. -~ - -~
~ .~ if

~& 4, - 4,

~. 4~S. .~

U, -.

*1
if .~ 4,

4, ~ 4, 4,
* 0 - a

2

£ ~ 05 -'5 : CLI
- a.-~ S4  

0
* . ,. .4, U,
* , - -8. 4,4,
* . EU.. 0'

- 4,~j ~

* . *;; k~ ~
* . p
* . S.. ** I
* . ;u~ -~ -~ U -
* . *~' U..~! A @0
* . S ~ ~% -- I;
* . - S.D S.D U . £'
* . C-. -~

JU, ... y4* -. '.~ -

~ ~ i:
* KS. *~~Z @ ~5 11U, . --4B. 04,4 4LI ou a.

* 4 . . . -* U * ** * U
* . S =
* - -i-. . .

U*- 2-

~
- . * - ~ g' 1, ~

*,~ ~L A~*~ ~
-, ~ V.S~ ~ ~1W

8-24



MVDR-LST-001 ROCO
31 JANUARY 1990

APPENDIX C -KEY WORDS AND) AUTHOR ALPHABETICAL LISTING

Part 1: Key Words

Part 2: Author Alphabetical Listing

C-1



APPENDIX C -KEY WORDS AND AUTHOR ALPHABETICAL LISTING

Part 1: Key Words and Topics

C-2



Author/Label Primary Topic Supporting Topics

Lager Gen. Purp. Signal Customizable processing,
[ALO 1] Processing analysis, & display;

Library of operations;
Separate specification
from implementation;
Communication structure
support

Purtilo Design Method Separate specification
(ALG 21 from implementation,

communication structure
support

Bokhari Module Assignment Multiple structure
[ALG 3]

Jamieson Mapping Parameters Algorithm/architecture
EALG 4] relationships

Chen Data Dependency Graph Parallel algorithm
LALG 5' design, forest and

multi-stages

Frieze quadratic assignment DAP SIlD
[ALG 6]

Engstrom Systolic Development Tools Executable notation,
fALG 7] intermediate language

McCrosky Array Manipulation SIMD algorithms, data
IALG 8] structures

Stone Parallel Database Query Data level parallelism
rAL 9

O'Hallaron Kalman Filer Warp computer
[ALG 10]

Alexander Multidimensional (N-D) State space model,

linear
[ALC 11] signal processing infinitive state machine

Lin Matrix Inversion Dynamic comnunication
[ALG 12] structure, target for

reconfigurable multi-
processes

Arya Performance Estimator Algorithm efficiency on
(ALG 13] Tool varying interconnection

architectures prior to
code
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Author/Label Primary Topic Supporting Topics

Fox Matrix algorithm- Hypercube
[ALC 14) multiplication

Feng Communicating Sequential Communication and
[ALG 15) Processes synchronization

Armstrong High Performance One-D

[ALG 161 FFTS; Matched Vector

Swarztrauber Multiprocessor FFTS Hypercube

[ALG 17]

Cover of Special Issue on
[ALG 18' Parallel Algrorithms

Dinning Methods survey ?NTD Svnchronzatior
'ARCH I

McBrvan Review of state-of-art

1ARCH 2" in parallel architecture

SnN-der Taxonomv
'ARCH 3

Casavant Panel on reconfigurable

LARCH 41 architecture

Martin Performance evaluation

'ARCH 52

Hach General purpose parallel
'ARCH 6: computing

Hwang Supercomputing architecture

[ARCH 7) review

Harp ESPRIT Project 1085- Reconfigurable
[ARCH 8) Transputer

Bronnenberg Symbolic/object-oriented

[ARCH 9] machine DOO=

Treleaven Review of state-of-art

[ARCH 10) in parallel architecture

Bisiani Tool Coordination Tool Planner to sequence
[ENV 1] tools/shell developer

Dart Environment Review Language, structure,
[ENV 2) toolkit, & method

environments,
environment list
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Author/Label Primary Topic Supporting Topics

.'-oves SIND Programming Parallel Pascal. MPP,
ENV 3] Environment Scientific programxting

Carle Scientific multiprocessor Fortran development and
[ENV 4] env. (Rn ) maintenance, loop

analysis
Smith Parallelizing Assistant Fortran development,

ENT' 5' Tool (PAT) loop analysis

Guarna Edit, debug & tune X-window & UNIX, proAec-;ENV 6; env. (FAUST) manager & dafabase,

Fortran & C
Appelbe Parallelizing Assistant Fortran 8X, depende=-,EN'V 7' Tool (PAT) graphs, Cray

Cover: Proceedings Super-
l' " S computing '88

3uarna (Faust) Window manager, loop
restructuring

Ertel :PSCi2 Multiple users, fi'e
access, workstation

Parasoft Hvpercube CS. 12VXEN .' IY(Tv-pes 
for parallel

PLOTIX) (Craphics
MOOSE, (Asvn. Op. Svs

Pienze Concurrent Programming SUPRENM, v neE",:, iSUPR rtM, ector node

parallel programaing
make library (mapping &

communications
Dongarra Parallel FORTRAN SCHEDULE, portability
ENV 13: 

hiding machine

dependence

Pratt Scientific parallel UNIX, Virtual Machine,E.V 14; programming multiple target machines

Dongarra SCHEDULE
[ENV 15]

Pike concurrent windows communications
interfaces

[ENV 16]

Gehani Concurrent C++ Two supersets of C with
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Author/Label Primary Topic Supporting Topics

[EXT.LANG 1 data abstraction and
parallel programming

Carlton Distributed Prolog Message passing for A;D

[EXT.LA-NG 2:parallelism

Shibayama Object-based Parallel Transformational rules,

'EXT.MNG. 3 Computing merging & splitting

concurrent objects

Stevenson Analysis of Sequential Compliler optimization
EXT.LAN . ; Prog to Determine methods-discover data

Concurrency grouping, operations,
communications, control

flow

-hen Functional Languxage Mathematical notation'

* "': LANG. 5' lambda calculus parallel
program optimization

'rossman English Language for Matrix arithmetic

7-"T LAN t* Math Program

Connection Machine Lisp Fine-grained, data-

. oriented style xappings
(arrays/hash tables'

Fisher SIM.D Optimization Abstraction of

LANG ~communication, compiler

~papelt Object-oriented Specifi- PDE spec. language,
LANG. cation parallel prog. SUPRENUM

Halstead Futures, Symbolic Computing Multilisp
"XT.L.NG. 10"

Felten Coherent Parallel C Data parallel model,

ELXT LANG. 11] elimination of domain
boundary checks,

transparent process

distribution, hypercube

Dally Object-oriented Concurrent CST (parallel Smalltalk

rEXT LANG. 121 Programming -80) distributed objects

(state us dist. across
many nodes)

Rosing Modified C for Distributed Better process and

[EXT LANG. 13] Memory Mach. communication control
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Author, Label Primary -3pic Supporting Topics

Wolfe Synchronization in Large job turnaround on

[EXT.LA-NG. 14] Multiprocessor shared memory machine

Cover: ESOP 86 European
[EXT.LANG. 15] Symposium on Programming

March 86 Saarbrucken

Triolet Parallelization with CALLS Restructuring compiler
[E.XT.LA.NG. 16] present

Zorn Extension to Common Lisp- Multiprocessing
[EXT.LAING. 171 Spur Lisp extensions

Allen IBM Parallel Fortran 3090/VF
L'EXT LANG. 18" Translator

Callahan Dist. Mem. Compiler Issues Virtual machine,
1EXT.LNC. 19' efficient message
passing

Mehrotra Block Structured Scientific Array arithmetic,

:EXT.LA10. 20: Language abstrations for portability

Chen Dynamic Memory Management Data dependency history,

ZXT.cs. . connection machine

Beck Parallel Operating System Extensions to UNIX
'EXT.0S. 2: Support process model language

extension, runtime
library, ADA & CTT,
sequent balance

Ellis Dynamic Storage Allocation Global shared memory
rE.XT.OS. 3:

Wolfstahl System Calls (mapping Signal changes in

:EXT.OS. 4' directive) communication structure
or occurance of mapping-
related events

:Bain Concurrent Programming Intel IPSC
[EXT.OS. 5) Toolkit

Tolle UNIX Utilies NCUBE
[EXT.OS. 6)

Angus Parallel I/O Facility Hypercube
[EXT.O. 7] (C & FORTRAN)

Schwan Arbitrary Communication Global Function, Intel
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Author/Label Primary Topic Supporting Topics

[EXT.OS. 8] Graphs

Gait Scheduling in a 2-tier Shared & distributed

[EXT.OS. 9] Memory Hierarchy memory combined

Schroder Process Execution and SUPRENUM

[EXT.OS, 10] Communication Environmment

Stevenson System Language Design Distribution of virtual

[EXT.OS. Il 
programs and large

arrays Holistic merge of
op. syst. & language

LeBlanc Set of Cooperating Balanced binary tree

[EXT.OS. 121 Processors

Malonv Message passing facility Portable C Library

[EXT OS. 13'

Vomberger Parallel Prolog on LA-N Async multiprocessor

EXTOS 14' arch.

Rahgoza Semantic Language of Distributed data,

[EXT OS. 151 transactions concurrency control
mechanisms

Garg Comm. Primatives Analyzer of comm.

'EXT OS. 16 structure Concurrent C

Fleckenstein parallel make

[EXTOS 171

Baalbergen parallel make

[EXTOS 18'

Yau Visual Languages Visualization, Software

[HCI 1] specifications

Krishnamoorthy Algorithm Animation Graphics primatives

[HCI 2)

Tomboulian Schematic Programming Graphical editor,

[HCI 3] visualization, validity
checks

Gannon Program Restructuring Performance predictor &

[HCI 4) statistics, pop-down

Myers Tools for User-Interface User-interface survey

[HCI 5] Tools

C-8



Author/Label Primary Topic Supporting Topics

Bailey Graphical Views Icon, Vector, Simulator

[HCI 6] Views

Brown Algorithm Animator Executive monitor with

[HCI 7] graphical I/0

Hsai pictorial programming visualization and

[HCI 8] animation through tuples
with both scenes and
films

DiNitto Next Century Languages Inertia of dusty deck

[LANG 1 software; very high
level languages

Perrott Array and Vector Optimizing compiler
L LA 2: Process Pascal

Tripathi Object-oriented Langugage Concurrent and
lA NG 3; distributed programming

data abstraction,

concurrency,
synchronization, inter-

object communication;
inheritance
reuseability, delegation

Shapiro Process-oriented Language Data flow synchroniza-

:LA.NG 4 Concurrent Prolo tion, guarded-command
L indeterminancy control

Baldwin Parallel Constraint Language Implicit parallelism via

'LANG 5' compilerConsul

Tick Parallel Logic Programming Prolog based

[LANG 6] Architecture

Clark PARLOG Systems programming &

[LANG 7] object-oriented
programming applications

Yamazaki Object-oriented Language High to low level

[LANG 8] parallelism small-talk
80 virtual machine

Hansen Communicating Sequential Concurrent agents
w/comm.

[LANG 9] Processor via unbuffered channels

Karp Parallel FORTRAN dialects Alliant FX/8, BB&N

[LANG 10] (12) Butterfly Cray X-MD,
Elxsi 6400, Encore
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Author/Label Primary Topic Supporting Topics

Multimax, Flex 32, IBM
3090-VF, Intel iPSC,
Sequent Balance

Gelernter Compiler vs. Language Issues CSP, Occam, Ada,
Parallel
[LANG 11] Lisp, Concurrent Prolog,

Functional

Mundie Ada Parallel Processing Ada tasking model
[LANG 12)

Goldman Qlisp-parallel lisp Futures, spawn
[LtNG 13]

Polychronopoulos Compiler Optimization Barrier sync., data
'LANG 14) dependencies, run-time

dependence

Guzzi FORTRAN-Vector & Parallel Multiprocessor & vector
[LANG 15)

Girkar Compilers Data dependencies
[LANG 161

Welch Transputer/Occam Abstraction, structuring
:LANG 17] & information hiding

Clapp Ada on a H)yercube Run-time system
[ LA'NG 18]

DeForest Hyverflow Hypercube Lucid
[LANG 19) Declarative Language Non-sequential language

Lake Language & model of
[LANG 201 computation

Jordan Language concepts Force task assignment
[LANG 21) structural, non-

sequential methods

Ahuja Linda Tuple space
[LANG 22)

Whiteside Linda LAN supercomputing
[LANG 23]

Lunberg parallel Ada real time MIMD multiprocessor
[LANG 24] system task execution scheme

Watson concurrent language
[LANG 25]
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Author/Label Primary Topic Supporting Topics

Cover of IEE seminar on
[LANG 26] parallel processing

Dongarra LINPACK LAPACK matrix-matrix
[LIB 1]

Snelling Parallel Library Data control, debug[LIB 2] effects, hardware

affinity, complexity
(ease of use), issuer of
libraries, (SPLIB by
Snelling portable
parallel library

Hammarling NAG Library Linear algebra routines
[LIB 3]

Nicol Speed up Problem size and optimal[MAP 1 speedup (dup)

Kruskal Granularity Definitions (many)
[MAP 2)

McDowell Static Analysis Program Analysis
!MAP 3]

Berman Parallel Algorithms Mapping into parallel
[MAP 4] architecture

Cherkassky Matrix Operation Hypercube
[MAP 5]

Moreno Partitioning Algorithms Coalescing, cut &[MAP 6] into Systolic Arrays pile, decomposition into
systolic arrays

Kumar Systolic Mapping Mapping 2-d systolic(MAP 71 arrays into l-d arrays,
improved matrix

Reddy Mapping I/O Hypercube
[MAP 8]

Dubois Synchronization Event ordering on
(MAP 91 multiprocessor

Wu Scheduling and Hypercube programming
[MAP 10) Synchronization aid

Muhlenbein Evolution Approach Assignment problem
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Author/Label Primary Topic Supporting Topics

[MAP 11) SUPRENUM, competition,
cooperation-better
results than known
heuristics

.Bailey Cover: 88 Proc.
(MAP 12] Int. Conf. on

Parallel Processing
Vol. II

Kim Architectural Graph representation
[MAP 13) Independence mapping linear clusters

McDowell Static Anaysis Concurrency history
[MAP 14] graph, all possible

parallel sta-tes

Greenbaum Synchronization Costs Barrier vs. free forms
[MAP 15:

Stout Vision Algorithm Mapping to parallel
[MAP 16] architectures variations

among architectures

Cover: Proceedings
[MAP 17] Supercomputing '87

.Martin Session Summary State-of-art in mapping
[MAP is;

.Fox Cover: Third Conf.
'.MAP 19' on Hypercube Concurrent

Computers and
Applications

Fox Neural Network Modeling Hypercube
[MAP 20] Algorithm

Fox Load Balancing Neural networks
(MAP 211 (simulated annealing)

Salmon Scattered Decomposition Costs and speedup
[MAP 22] possible

Pettey Simulated Annealing Process Placement
[MAP 23)

Livingstone Reference Distribution Hypercube
[MAP 24] Methods

Ercal Task Allocation Recursive minicut
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Author/Label Primary Topic Supporting Topics

[MAP 25] bipartitioning,
hypercube

Chen Graph-oriented mapping Approximation algorithms
Greedy mapping, hypercube

[MAP 26]

Bell Data Parallelism Data management
[MAP 27] independent large block

partitioning
Kruatrachue Automatic Grain Size Conflict between load
[MAP 28] Determinations balancing and

communications
miniturization grain
packing with schedule
optimizer.

Ramanujam Task Allocation Simulated annealing
rMAP 29]

Cover: Proceedings
[MAP 301 Supercomputing '88

Kramer Task Allocation Comparison of optimum
[MAP 31] with random solution

Musciano Task Allocation Simultaneous PASCAL
[MAP 32: Dynamic Schedaling thread management

profile

Weiss Loop Allocation DOALL FORK-JOIN
[MAP 33: Dynamic Scheduling

Peir Recurrence Programming Partitioning recurrences

[MAP 34] linear recurrence
minimum distance method
totally independent
computation

Cover: Proceedings 1988
[MAP 35] Int. Conf. on Parallel

Processing Vol. I.

Missirlis PDE Programming Successive over relation
[MAP 36] (SOR)

Kapenga Task Allocation Adaptive task
[MAP 37] partitioning - MIMD high

level macros portable,

to MIMD 2-d integration
method
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Author/Label Primary Topic Supporting Topics

Bisiani Multilanguag ! (Agora) heterogeneous
[MAP 381 machine shared memory

abstractions

Colin Task Alloca-inn Graph model dependency
[MAP 39] graph, virtual

distributed system

Rosenberg SIMD simulation SIMD to vector mapping
[MAP 40) BLITZEN machine for NASA

deJong matrix bounds symbolic bounds checkirg
[MAP 41] and correction

Katsef data partitioning message passing machine
[MAP 42] assembler

Bradley Picasso Hypercube opernt4"
[OS 1) system

Krumme SIMPLEX NCUBE hypercube

operating
[OS 2] system

Salmon MOOSE Hypercube operating
[OS 31 system

:Pierce NX/2 Hypercube operating
fOS 4) system

Gokhale Data Flow Language Data dependency
analysis,
[PROG 1] data flow language

Purtilo Environment Design System Communication structure

[PROG 2] provided from specifi-

cation

Browne Computer Oriented Display Abstraction,
portability,
[PROG 3] Environment visual programming,

computation units,
dependency relations,
independence from
architecture

Neves Parallel Programming Problems of mapping vs
[PROG 4] computer developers

claims
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Author/Label Primary Topic Supporting Topics

DeMarco Parallel Programming Data flow, reusability,
[FROG 5) object oriented,

Cavano Parallel Programming No "systems" approach to
[FROG 6) parallel

Cavano Parallel Programming No "systems" approach to
[FROG 7] parallel

Russell Parallel Programming Scheme for r-,,,rking of
existing FORTRAN;

[PROG 8) diagram of environment

Fox Parallel Programming Grain control, loosely
[FROG 9] synchronous close;

virtual machine; neutral
simulated annealing
decomposition

Chandy Architectural Independence Specification notation,
'PROG 10] UNITY, functional vs.

imperative programming
vs. logic

Sobek Architectural Independence CODE graphical
interface,
[PROG 11] encapsulation strategy

Nicol Speedup Relation between problem
[PROG 12] size and architecture

Chandy Speedup Cost of storage &
[FROG 13] communications, time,

space

Sabot Paralation Model Parallel relation,
[PROG 14] algorithm description

data structure (1) and
operator (3)

Hudak Functional Programming Separate specification
[PROG 15] and implementations

"parafunctlonal
programming",
declarative program
execution, algorithm
dependent, "ParaAlfl"

Hudak See [PROG 15]
[PROG 16]
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Author/Label Primary Topic Supporting Topics

Fox Parallel Algorithms Hypercube matrix, FFT,[PROG 17) 
Monte Carlo, sorting,
Scalar products, etc.

Kallstrom Parallel Programming iPSC's transputers &
(0cc am)
[Ocam) 1balance 

(C) - reviewPROC 181 
of environments, division of
execution, data sharing,
synchronization of events

Hey Reconfigurable Parallel Transputers - extracting[PROC 19) Program 
parallelism, geometric

parallelism (data
distributed), algometric
parallelism, control
grain, load balancing/
communication overload

Cover: 88 Int. Conf. on
[PROC 20) Computer Language

Bagrodia Parallel Programming Enhanced C for the CM)PROG 21) 
(SC) derived from UNITY,
data parallel style
(SIMD or MIMD).
primative & dta
structures

McBryan PDE Parallel Programming SOR, multigrid conjugate[PROG 22) 
gradient

Bershad Object Oriented Parallel PRESTO, predefined object(PROG 23] Programming 
types: threads, synchroni-

zation objects, written in
C++ Sequent Dynix, run
time system

Brandes Parallel Programming Parallelization tool/(PROC 24) 
knowledge based

Zima Parallel Programming Semi-automatic
[PROG 25) 

parallelization for
SUPRENUM multigrid

Percus Parallel Algorithm Random number generator
[PROG 26)

C-16



Author/Label Primary Topic Supporting Topics

Storey Parallel Programming Monitor synchronization,
[PROG 27] highest level

concurrency, algorithm
design

Karp Parallel Programming Two styles: Fork-Join
and
[PROG 28] simple program multiple

data

Polychronopoulos Vector Programming Scheme for arbitrarily
[PROG 29) nested loops

Oldenhoeft Functional Programming Applicative, functional
[PROG 30) definitions, data

dependencies constrain
evaluation, streams &
interation in a single
assignment language
(SISAL)

Cover: 1st Int. Conf.
[PROG 31] of Supercomputing -

Athens, Greece

Solchenbach PDE Multigrid methods for
PDE
[PROG 321 SUPRENLh

Dongarra Parallel Environment Transportable numerical
[PROG 33] software SCHEDULE

package (environment)

Jayasimha Parallel Programming Performance estimatiun
[PROG 34] for synchronization

Francis Procedure Calls Parallelism programming
[PROG 35] systems medium grain

Eisenstadter Locality of Reference Software optimization
[PROG 36]

Weihl Abstract Data Types Atomic actions
(PROG 37]

Bastani Parallel components Abstract data type,
[PROG 38] functional, interface,

control server, client

Martin Parallel procedure calls UNIX
[PROG 39]
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Author/Label Primary Topic Supporting Topics

Parkinson Speedup Computation costs in

[PROG 401 
multiprocessor summation
operator, global
operator

Terrano parallel compiler distributed memory

fFROG 41) 
multiprocessor -

reconfigurable

Preiss dataflow partitioning data flow graphs

[PROG 42]

.McGregor Comm. ACM Special Issue

[Frog 431

kmnar Speedup Time cost, 5 categories

'SIM 1] of parallel structures

Bain HvperSim Simulation of hpercubes

SI51M 2V 
on hypercubes

Yoder Word Recognition SIMD & Array

architecture
,SiM 3" word recognition,

parallel algorithms

Ramamoorthy Petri Nets Simulation method

'SIM 4]

Yaw Petri Nets Cycle time simulation

[SIM 5]

Chung Petri Nets Task simulation

[SIM 6]

Krauss Petri Nets Process net

[SIM 7]

Stotts Execution Scematics Parallel Flow Graphics

ISIM 8] 
(PFG), graphical
programming, petri nets

Hura Petri net environment PNSOFT

[SIM 9]

Bray concurrency detection architecture modeling

[SIM 101 
architecture

optimization

Lopriore User interface for Block-oriented languages

[SUP 1] debugging & measurement
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Author/Label Primary Topic Supporting Topics

Martin Performance Evaluation Practices of
[SUP 2J supercomputer

performance evaluation

Gupta Symbolic Debugging of Trace scheduling
compiler

ISUP 3] Parallel Code /debugger

Mills Debugger for tree-oriented Network server, window
[SUP 41 parallel computer manager, parallel

debugger

Reeves Performance Meas. through High-level language
:SUP 5' fundamental algorithms impacts

Hough Pattern-oriented Debugger Interprocessor control

'SUP 6 and data flow patterns
time-stamped event
stream

Burkhart Monitoring Facilitier Multiprocessing losses.
SUP 7' performance measure tool

Callahan Test Suite Vectorizing compiler
(100

SUP 8 Fortran Loops)

Eager Speedup and Efficiency
:SUP 9 Measures

Pan Concurrent Debugger (DECON) PSC /2, C & FORTRAN,
LSUP I0' lost messages

Bohm Performance Evaluation Single assignment, data
,SUP iI' flow

Flower CrOS Toolset (Comfort) Communications, UNIX,
[SUP 12] PLOTIX, NDB, Hypercube,

NCUBE

McGuire Concurrency Measurement Cache Miss -'.ects,
(SUP 131 FX/B

So Speedup Analyzer
[SUP 14]

Allen Fortran Developer Nondeterminism
[SUP 15]

Feo Parallel Complexity Livermore Loops
[SUP 16]
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Author/Label Primary Topic Supporting Topics

Griffin Fortran Analyzer & Debugget GRAY-X-MP Multitasking
(SUP 17) library syntax

Bemmerl Visualization, Debugging, Portable tool design,
[SUP 18] Performance Analysis integration into

programming environment,
multi-architecture

Goldberg Concurrently Executing Load management,
protocol
rSuP 19] Processes For transparent process

cloning

Kumar Concurrency detection Large Fortran codes
SUP 20

Kumar Concurrency Measurement Large Numerical Programs
'SUP 20

'Telan Matrix decomposition Shared memory machines
'SCP 21

i er Debugging and incrementa] Parallel Program
Debugge r
SUP 22' Tracing (PPG)

McCrearN Graph partitioning Automatic grain size
SU P 2-

Cheng Machine independent DRAM model of machines
'SUP 2 Parallel programming

Stone Debugging via reply Speculative reply

'SUP 32 concurrency map

Bell Future of high performance
[TECH 1] computing
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Author/Label Primary Topic Supporting Topics

Ahuja Linda Tuple space
[LANG 221

Alexander Multidimensional (N-D) State space model,

linear[ALG 11] Signal processing infinitive state machine

Allen IBM Parallel Fortran 3090/VF
[EXT.LANG. 18] Translator

Allen Fortran Developer Nondeterminism
ISUP 15)

Ammar Speedup Time cost, 5 categories
[SIM 1] of parallel structures

Angus Parallel i/0 Facility Hypercube
[EXT OS 71 (C & FORTRAN)

Appelbe Parallelizing Assistant Fortran 8X, dependencyrENV 71 Tool (PAT) graphs, Cray

Armstrong High Performance One-D
[ALG 161 FFTS; Matched Vector

Arva Performance Estimator Algorithm efficiency on[ALG 131 Tool varying interconnection
architectures prior to
code

Baalbergen Parallel make
[EXTOS 181

Bagrodia Parallel Programming Enhanced C for the CM
IPROG 21] (SC) derived from UNITY,

data parallel style
(SIMD or MIMD),
primative & data
structures

Bailey Graphical Views Icon, Vector, Simulator
EHCI 6] Views

Bain Concurrent Programming Intel IPSC
[EXT.OS. 5] Toolkit

Bain HyperSim Simulation of hypercubes
[SIM 2) on hypercubes

Baldwin Parallel Constraint Language Implicit parallelism via
(LANG 5] compilerConsul
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Bastani Parallel components Abstract data type,
[PROG 38) functional, interface,

control server, client

Beck Parallel Operating System Extensions to UNIX
[EXT.OS. 2] Support process model language

extension, runtime
library, ADA & CTT,
sequent balance

Bell Data Parallelism Data management
[MAP 27) independent large block

partitioning

Kruatrachue Automatic Grain Size Conflict between load
[MAP 28] Determinations balancing and

communications
miniturization grain
packing with schedule
optimizer.

Bell Future of high performance
[TECH 11 computing

Bemmerl Visualization, Debugging, Portable tool design,
[SUP 18] Performance Analysis integration into

programming environment,
multi-architecture

Berman Parallel Algorithms Mapping into parallel
[MAP 4) architecture

Bershad Object Oriented Parallel PRESTO, predefined
[PROG 23] Programming object types: threads,

synchronization objects
written in C++ Sequent
Dynix, run time system

Bisiani Tool Coordination Tool Planner to sequence
[ENV 1] tools/shell developer

Bisiani Multilanguage (Agora) heterogeneous
[MAP 38] machine shared memory

abstractions

Bohm Performance Evaluation Single assignment, data
[SUP 11] flow

Bokhari Module Assignment Multiple structure
[ALG 3]

Bradley Picasso Hypercube operating
[os 1] system
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Author/Label Primary Topic Supporting Topics

Brandes Parallel Programming Parallelization tool/
(FROG 24) knowledge based

Bray Concurrency detection Architecture modeling[SIM 10] architecture
optimization

Bronnenberg Symbolic/object-oriented
[ARCH 9] machine DOOM

Brown Algorithm Animator Executive monitor with
[HCI 71 graphical I/O

Browne Computer Oriented Display Abstraction,
portability,
)PROG 3) Environment Visual programming,

computation units,
dependency relations,
independence from
architecture

Burkhart Monitoring Facilitier Multiprocessing losses
[SUP 71 performance measure tool

Callahan Dist. Mem. Compiler Issues Virtual machine,
(EXT.LA.NG. 19] efficient message
passing

Callahan Test Suite Vectorizing compiler

[SUP 81 (100I 8Fortran Loops)

Carle Scientific multiprocessor Fortran development and[ENV 4) env. (Rn) maintenance, loop

analysis

Carlton Distributed Prolog Message passing for AND
[EXT.LANG. 21 parallelism

Casavant Panel on reconfigurable
(ARCH 4] architecture

Cavano Parallel Programming No "systems" approach to(PROG 6) parallel

Cavano Parallel Programming No "systems" approach to[PROG 7] parallel

Chandy Architectural Independence Specification notation,
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[PROG 10] UNITY, functional vs.
imperative programming
vs. logic

Chandy Speedup Cost of storage &
[PROG 13] communications, time,

space

Chen Data Dependency Graph Parallel algorithm
[ALG 5) design, forest, and

multistages

Chen Functional Language Mathematical notation/
[EXT.IANG. 5] lambda calculus parallel

program optimization

Chen Dynamic Memory Management Data dependency history,

[EXT.OS. 1] Connection machine

Chen Graph-oriented mapping Approximation algorithms

[MAP 26] Greedy mapping, hypecube

Cheng Machine independent DRAM model of machines
[SUP 25] parallel programming

Cherkasskv Matrix Operation Hypercube
[MAP 5]

Chung Petri Nets Task simulation
[SIM 6]

Clapp Ada on a Hypercube Run-time system
[LANG 18]

Clark PARLOG Systems programming &
[LANG 7) object-oriented

programming applications

Colin Task Allocation Graph model dependency
[MAP 39) graph, virtual

distributed system

Dally Object-oriented Concurrent CST (parallel Small talk
[EXT.LANG. 12] Programming -80) distributed objects

(state us dist. across

many nodes)

Dart Environment Review Language, structure,
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[ENV 2] toolkit, & method
environments,
environment list

DeForest Hy~erflow Hypercube Lucid
[LANG 19] Declarative Language Nonseouential language

deJong Matrix bounds Symbolic bounds checking
[MAP 41] and correction

DeMarco Parallel Programming Data flow, reusability,
[PROG 5] object oriented,

DiNitto Next Century Languages Inertia of dusty deck
(LANG lj software; very high

level languages

Dinning Methods survey MMD Synchronization
(ARCH 1

Dongarra Parallel FORTRAN SCHEDULE, portability,
[ENV 13] hiding machine

dependence

Dongarra SCHEDULE
[EYV 1SJ

Dongarra LINPACK LAPACK matrix-matrix
[LIB 1

Dongarra Parallel Environment Transportable numerical
[PROG 33] software SCHEDULE

package (environment)

Dubois Synchronization Event ordering on multi-

[MAP 9) Processor

Eager Speedup and Efficiency
[SUP 9] Measures

Eisenstadter Locality of Reference Software optimization
[PROG 36]

Ellis Dynamic Storage Allocation Global shared memory
[EXT.OS. 3]

Engstrom Systolic Development Tools Executable notation,
[ALG 7] intermediate language

Ercal Task Allocation Recursive minicut
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[MAP 25] bipartitioning,

hypercube

Ertel PSC/2 Multiple users, file
[ENV 10) access, workstation

Felten Coherent Parallel C Data parallel model,
[EXT.LANG. 11 elimination of domain

boundary checks,
transparent process
distribution, hypercube

Feng Communicating Sequential Communication and
[ALG 15] Processes synchronization

Feo Parallel Complexity Livermore Loops
[SUP 16]

Fisher SIMD Optimization Abstraction of
[EXT.LANG. 8] communication, compiler

Fleckenstein Parallel make
[EXTOS 17]

Flower CrOS Toolset (Comfort) Communications, U NIX,
!SUP 12] PLOTIX, NDB, Hypercube,

NCUBE

Fox Matrix algorithm- Hypercube
[ALG 14] multiplication

Fox Neural Network Modeling Hypercube
[MAP 20] Algorithm

Fox Load Balancing Ne'aral networks
[MAP 21] (simulated annealing)

Fox Parallel Programming Grain control, loosely
[PROG 9] synchronous close;

virtual machine; neutral
simulated annealing
decomposition

Fox Parallel Algorithms Hypercube matrix, FFT,
[PROG 17] Monte Carlo, sorting,

Scalar products, etc.

Francis Procedure Calls Parallelism programming
[PROG 35] systems medium grain

Frieze Quadratic assignment DAP SIMD
[ALG 6]
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Gait Scheduling in a 2-tier Shared & distributed
[EXT.OS. 9) Memory Hierarchy memory combined

Gannon Program Restructuring Performance predictor &
[HCI 4] statistics, pop-down

Garg Comm. Primatives Analyzer of comm.
[EXT.OS. 16] structure Concurrent C

Gehani Concurrent C++ Two supersets of C with
[EXT.LANG. 1] data abstraction and

parallel programming

Gelernter Compiler vs. Language Issues CSP, Occam, Ada,
Parallel
[LANG 11] Lisp, Concurrent Prolog,

Functional

Girkar Compilers Data dependencies
[LANG 16)

Gokhale Data Flow Language Data dependency
analvsis,
[PRO, I1 data flow language

Goldberg Concurrently Execrating Load management,
protocol

[SUP 19] Processor for transparent process
cloning

Goldman Qlisp-parallel lisp Futures, spawn
[1LANC 13]

Greenbaum Synchronization Costs Barrier vs. free forms
[MAP 151

Griffin Fortran Analyzer & Debugger CRAY-X-MP multitasking
[SUP 17] library syntax

Grossman English Language for Matrix arithmetic
[EXT.LANG. 6) Math Program

Guarna Edit, debug & tune X-vindow & UNIX, project
[ENV 6] env. (FAUST) manager & database,

Fortran & C

Guarris (Fsust) Window manager, loop
[ENV 9] restructuring

Gupta Symbolic Debugging of Trace scheduling
compiler
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[SUP 3] Parallel Code /debugger

Guzzi FORTRAN-Vector & Parallel Multiprocessor & vector
[LANG 15]

Hach General purpose parallel
[ARCH 6] computing

Halstead Futures, Symbolic Computing Multilisp
[EXT.LANG. 10]

Hammarling NAG Library Linear algebra routines
[LIB 3]

Hansen Communicating Sequential Concurrent agents
W/comm.

[LANG 9] Processor via unbuffered channels

Harp ESPRIT Project 1085- Reconfigurable
[ARCH 8] Transputer

Hey Reconfigurable Parallel Transputers - extracting
[PROC 19) Program parallelism, geometric

parallelism (data
distributed), algometric
parallelism, control

grain, load balancing/
communication overload

Hough Pattern-oriented Debugger Interprocessor control
[SUP 6] and data flow patterns

time-stamped event

Hsai Pictorial programming visualization and
(HCI 8] animation through tuples

with both scenes and
films

Hudak Functional Programming Separate specification
[PROG 15] and implementations

"parafunctional
programming",

declarative program
execution, algorithm

dependent, "ParaAlfl"

Hudak See [PROG 15]
[PROG 16]

Hura Petri net environment PNSOFT
[SIM 9]
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Hwang Supercomputing architecture
[ARCH 7) review

Jamieson Mapping Parameters Algorithm/architecture
[ALG 4] 

relationships

Jayasimha Parallel Programming Performance estimation
[PROG 34) for synchronization

Jordan Language concepts Force task assignment
[LANG 21) structural, non-

sequential methods
Kallstrom Parallel Programming IPSC's transputer(Occam) 

& balance (c) - review
[PROG 18! of environments,

division of execution,
data sharing,
synchronization of
events

Kapenga Task Allocation Adaptive task[MAP 37) 
partitioning - MIMD high
level macros portable,
to MIMD 2-d integration
method

Karp Parallel FORTRAN dialects Alliant FX/8, BB&N[LANG 10) (12) Butterfly Cray X-MD,
Elxsi 6400, Encore

Multimax, Flex 32, IBm
3090-VF, Intel iPSC,
Sequent Balance

Karp Parallel Programming Two styles: fork-join
and
[PROG 28] 

Simple program multiple

data

Katsef Data partitioning Message passing machine(MAP 421 
assembler

Kim Architectural Graph representation(MAP 13] Independence mapping linear clusters

Kramer Task Allocation Comparison of optimum[MAP 31) 
with random solution

Krauss Petri Nets Process net
[SIM 7)
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Krishnamoorthy Algorithm Animation Graphics primatives

[HCI 2)

Krumme SIMPLEX NCUBE hypercube
operating

[OS 2] system

Kruskal Granularity Definitions (many)

[MAP 2]

Kumar Systolic Mapping Mapping 2-d systolic

[MAP 7] arrays into l-d arrays,
improved matrix

Kumar Concurrency Measurement Large Numerical Programs

[SUP 20]

Kumar Concurrency detection Large Fortran codes

rSUP 201

Lager Gen. Purp. Signal Customizable processing,

[ALG 1] Processing analysis, & display;
Library of operations;
Separate specification
from implementation;
Communication structure
support

Lake Language & model of

[LA-NG 20; computation

LeBlanc Set of Cooperating Balanced binary tree

[EXT.OS. 12: Processors

Lin Matrix Inversion Dynamic communication

[ALG 12] structure, target for
re-configurable multi-

processes

Livingstone Reference Distribution Hypercube

[MAP 24] Methods

Lopriore User interface for Block-oriented languages

[SUP 1) debugging & measurement

Lunberg Parallel Ada realtime MIMD multiprocessor

[LANG 24) system task execution scheme

Malony Message passing facility Portable C Library

[EXT.OS. 13]
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Martin Performance evaluation
[ARCH 5]

Martin Parallel procedure calls UNIX
[PROG 39)

Martin Performance Evaluation Practices of[SUP 2) 
supercomputer

performance evaluation
McBryan Review of state-of-art
[ARCH 2) in parallel architecture

McBrvan PDE Parallel Programming SOR, multigrid conjugate1PROC 22] 
gradient

McCreary Graph Partitioning automatic grain size
[SuP 24'

McCroskv Array Manipulation SIM! algorithms data(ALG 8, IK lortmdt
structures

McDowell Static Analysis Program Analysis
MA? 31

McDowell Static Anavsis Concurrency history[MAP 14' 
graph, all possible

parallel states
McGuire Concurrency Measurement Cache Miss effects,ISUP 13[ 

FX/8

Mehrotra Block Structured Scientific Array arithmetic,
[EXT.LANG. 20 Language abstrations for portability

Miller Debugging and incremental Parallel Program
Debugger
[SUP 22] Tracing (PPG)
Mills Debugger for tree-oriented Network server, windowISUP 4] parallel computer manager, parallel

debugger
Missirlis PDE Programming Successive over relation[MAP 36] 

(SOR)

Moreno Partitioning Algorithms Coalescing, cut &[MAP 6] into Systolic Arrays pile, decomposition into
systolic arrays

Muhlenbein Evolution Approach Assignment problem
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,MAP 11] SUPRENUM, competition,
cooperation-better

results than known
heuristics

Mundie Ada Parallel Processing Ada tasking model
[LANG 12)

Musciano Task Allocation Simultaneous PASCAL
[MAP 32] Dynamic Scheduling thnead management

profile

Myers Tools for User-Interface User-interface survey
HCI 51 Tools

Neves Parallel Programming Problems of mapping vs
"PROG 4' computer developers

claims

Nicol Speed up Problem size and optimal
"MAP I' speedup (dup)

Nicol Speedup Relation between proble7
'PROG 12' size and architecture

O'Hallaron Kalman Filer Warp computer
:ALL 10"

Oldenhoeft Functional Programming Arplicative, functional
P.-.G 30, definitions, data

dependencies constrain
evaluation, streams &

interation in a single
assignment language
(SISAL)

Pan Concurrent Debugger (DECON) PSC /2, C & FORTRAN,
'SUP 10' lost messages

Parkinson Speedup Computation costs in
[PROC 401 multiprocessor summation

operator, global
operator

Peir Recurrence Programming Partitioning recurrences

[MAP 34] Linear recurrence
minimum distance method
totally independent
computation
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Percus Parallel Algorithm Random number generator

[PROG 26)

Perrott Array and Vector Optimizing compiler
[LANG 2] Process Pascal

Pettey Simulated Annealing Process Placement

[MAP 23]

Pienze Concurrent Programming SUPRENUM, vector node

[ENV 121 parallel programming

make library (mapping &

communications

Pierce NX/2 Hypercube operating

OS 4 i  system

Pike Concurrent windows Communications
interfaces

Ef'EN 16

Polvcbronopou'os Compiler Optimization Barrier sync., data

'.A.NG 1-' dependencies, run-time

dependence

Poiychronopoulos Vector Programming Scheme for arbitraril.

'PROC 29 nested loops

Pratt Scientific parallel INIX, Virtual Machine,
'eign 1-' programming multiple target macnines

Preiss Dataflow partitloning Dataflow graphs
'PROC 42,

Purtilo Design Method Separate specification
ALL 2, from implementation,

communication structure
support

Purtilo Environment Design System Communication structure

[PROG 2) Provided from specifi-

cation

Rahgoza Semantic Language of Distributed data,
[EXT.OS. 15) transactions concurrency control

mechanisms

Ramamoorthy Petri Nets Simulation method

[SIM 4)

C-34

P



Author/Label Primary Topic Supporting Topics

Ramanujam Task Allocation Simulated annealing
[MAP 29]

Reddy Mapping I/O Hypercube
[MAP 8]

Reeves SIMD Programming Parallel Pascal, MPP,
[ENV 3] Environment Scientific programming

Reeves Performance Meas. through High-level language
[SUP 5) fundamental algorithms impacts

Rosenberg SIMD simulation SIMD to vector mapping
[MAP 403 BLITZEN machine for NASA

Rosing Modified C for Distributed Better process and
[EXT.L.ANG. 13' Memory Mach. communication control

Ruppelt Object-oriented Specifi- PDE spec. language,
XT.LANGC 9 cation parallel prog. SUPRENUM

Russell Parallel Programming Scheme for re-working of

rPROG 81 Existing FORTRAN;
diagram of environment

Sabot Paralation Model Parallel relation,
'PROG I- algorithm description

data structure (1) and
operator (3)

Salmon Scattered Decomposition Costs and speedup
.MAP 22 possible

Salmon MOOSE Hypercube operating
fOS 3 system

Schroder Process Execution and SUPRENUM
[EXT.OS. 10' Communication Environmment
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Schwan Arbitrary Communication Global Function, Intel
[EXT.OS. 8] Graphs

Shapiro Process-oriented Language Data flow synchroniza-
(LANG 4) Concurrent Proloa tion, guarded-command

indeterminancy control

Shibayama Object-based Parallel Transformational rules,
[EXT.LA-NG. 3) Computing merging & splitting

concurrent objects

Smith Parallelizing Assistant Fortran development,
[EN-V 5) Tool (PAT) loop analysis

Snelling Parallel Library Data control, debug
[LIB 2) effects, hardware

affinity, complexity
(ease of use), issuer of
libraries, (SPLIB by
Snelling portable
parallel library

Snyder Taxonomy
ARCH 3

So Speedup Analyzer
:sup 14;

Sobek Architectural Independence CODE graphical
interface,
[PROC 11 Encapsulation strategy

Solchenbach PDE Multigrid methods for
PDE
[PROG 32] SUPRENUM

Stevenson Analysis of Sequential Compliler optimization
(EXT.LANG. 4) Prog. to Determine methods-discover data

Concurrency grouping, operations,
communications, control
flow

Stevenson System Language Design Distribution of virtual
[EXT.OS. 11] programs and large

arrays Holistic merge of
op. syst. & language

Stone Parallel Database Query Data level parallelism
[ALG 9]

Stone Debugging via reply Speculative reply
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[SUP 32] concurrency map

Storoy Parallel Programming Monitor synchronization,

[PROG 27] highest level
concurrency, algorithm
design

Stotts Execution Scematics Parallel Flow Graphics

[SIM 8] (PFG), graphical
programming, petri nets

Stout Vision Algorithm Mapping to parallel

[MAP 16] architectures variations

among architectures

Swarztrauber Multiprocessor FFTS Hypercube

[ALG 17]

Terrano Parallel compiler Distributed memory

[PROC 41) multiprocessor -
reconfigurable

Tick Parallel Logic Programming Prolog based

[LA.NG 6' Architecture

Tolle UNIX Utilies NCUBE

[EXT.OS. 61

Tomboulian Schematic Programming Graphical editor,

[HCI 3',  visualization, validity
checks

Treleaven Review of state-of-art

[ARCH 10) in parallel architecture

Triolet Parallelization with CALLS Restructuring compiler

[EXT.LANG. 16] present

Tripathi Object-oriented Langugage Concurrent and

[LANG 3] ii distributed programming

data abstraction,
concurrency,
synchronization,
interobject communication;
inheritance reuseability,

delegation

Vomberger Parallel Prolog on LAN AsynC multiprocessor

[EXT.OS. 14] arch.

Watson Concurrent language

(LANG 25]
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Weihl Abstract Data Types Atomic actions
[PROG 37]

Weiss Loop Allocation DOALL FORK-JOIN
[MAP 33] Dynamic Scheduling

Welch Transputer/Occam Abstraction, structuring
[LANG 17] & information hiding

Whelan Matrix decomposition Shared memory machine
[SUP 21,]

Whiteside Linda LAN supercomputing
[LANG 23]

Wholey Connection Machine Lisp Fine-grained, data-
[EXT.LANG. 7] oriented style xappings

(arrays/hash tables)

Wolfe Synchronization in Large job turnaround on

[EXT.LAN G. 14 Multiprocessor Shared memory machir-s

Wolfstahl System Calls (mapping Signal changes in
[EXT.OS. 4i directive) communication structure

or occurance of mapping-
related events

Wu Scheduling and Hypercube programming
[MAP 10' Synchronization aid

Yamazaki Object-oriented Language High to low level
[LANG 8, parallelism small-talk

80 virtual machine

Yau Visual Languages Visualization, Software
[HCI 1] specifications

Yaw Petri Nets Cycle time simulation
[SIM 5]

Yoder Word Recognition SIMD & Array
architecture
[SIM 3) word recognition,

parallel algorithms

Zima Parallel Programming Semi-automatic
[PROG 25] parallelization for

SUPRENUM multigrid

Zorn Extension to Common Lisp- Multiprocessing
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[EXT.LANG. 17) Spur Lisp Extensions
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